라틴어 문장 검색

Ecce igni datum est in escam, utramque partem eius consumpsit ignis, et medietas eius adusta est; numquid utile erit ad opus?
보아라, 그것은 땔감으로 불에 들어간다. 양쪽 끝은 불에 타 버리고 가운데는 그을렸으니 그것을 무엇에 쓰겠느냐? (불가타 성경, 에제키엘서, 15장4)
At vero ubi duas meidetates habent, utraeque extremitates iuncate utrisque medietatibus aequales fiunt, ut xij et xxvj, cum iunxeris, fiunt xlviij.
(보이티우스, De Arithmetica, Liber primus, Descriptionis ad inpariter paris naturam pertinentis expositio 1:4)
Haec autem huiusmodi invenietur, si duobus terminis constitutis, qui ipsi tribus creverint intervallis, longitudine latitudine et profunditate, duo huismodi termini medii fuerint constituti et ipsi tribus intervallis notati, qui vel ab aequalibus per aequales aequaliter sint producti vel ab inaequalibus ad inaequalia inaequaliter, vel ab inaequalibus ad aequalia aequaliter, vel quolibet alio modo, atque ita, cum armonicam proportionem custodiant alio tamen modo comparati faciant arithmeticam medietatem hisque geometrica medietas, quae inter utrasque versatur, deesse non possit.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:3)
Si vero fuerint duae medietates iunctae, ipsoae utraeque aequales erunt super se terminis constitutis, ut est in hoc ordine ij vj x xiij.
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 4:16)
Ut si ponantur j ij iij, unus et iij quattuor reddunt, duo vero, qui medius inter utrosque est, quaternarii medietas invenitur.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 4:2)
Medietas autem quaedam, quae utrorumque participat, est numerus, qui voactur inpariter par.
(보이티우스, De Arithmetica, Liber primus, Divisio paris numeri 1:3)
Inpar quoque numerus, qui a paris numeri natura substantiaque disiunctus est—si quidem ille in gemina aequa dividi potest, hic ne secari queat, unitatis inpedit inverventus—tres habet similiter subdivisiones, quarum una eius pars est is numerus, qui vocatur primus et incompositius, secunda vero, qui est secundus et compositus, et tertia is, qui quadam horum medietate coniunctus est et ab utriusque cognatione aliquid naturaliter trahit, qui est per se quidem secundus et compositus, sed ad alios comparatus primus et incompositus invenitur.
(보이티우스, De Arithmetica, Liber primus, De numero inpari eiusque divisione 1:1)
vel si sit in quattuor terminis disiuncta proportio, quod fit sub utrisque extremitatibus, id duarum medietatum multiplicatione concrescat, ut, si sint ij iiij viij xvj, quod fit ex bis xvj, id ex quater viij reddatur.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 22:3)
sin vero hic alius dux et alius comes, illic vero utrique sint alii, vocabitur disiuncta medietas.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 1:5)
Inpariter par numerus est ex utrisque confectus et medietatis loco gemina extremitate concluditur, ut, quo ab utroque discrepet, eadem ad alterutrum congnatione iugatur.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 1:1)
Sin vero disiuncta sit, quod fit ex utrisque extremitatibus compositis, hoc ex duabus medietatibus redditur.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 4:5)
Est autem proprium in hac quoque dispositione, quod illud, quod continetur sub maiore termino et medietate duplum est eo, quod sub utrisque extremitatibus continetur.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 2:6)
In utrisque enim ternarius differentia est et iunctae extremitates medietate duplae sunt.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:13)
Si vero armonicam medietatem coniungere velim, xvj mihi numerus inter extremitates utrasque ponendus est, ut sit hoc modo:
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 3:1)
In quattuor enim terminis si fuerit quemadmodum primus ad tertium sic secundus ad quartum, proportionum ratione scilicet custodita, geometrica medietas explicatur, et quod continetur sub extremitatibus, aequum erit ei, quod sub utraque medietate ad se invicem multiplicata conficitur.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:4)

SEARCH

MENU NAVIGATION