라틴어 문장 검색

Ut rationem ineamus errorum in latitudinem, fingamus planum Orbis QES immobile manere;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 62:2)
& ex errorum exposita causa manifestum est, quod ex viribus NM, ML, quae sunt causa illa tota, vis ML agendo semper secundum planum Orbis PAB, nunquam perturbat motus in latitudinem, quodq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 62:3)
Nodi igitur in quadraturis constituti perpetuo recedunt, in Syzygiis (ubi motus in latitudinem nil perturbatur) quiescunt;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 63:11)
& hinc errores angulares e centro S spectati (id est tam motus Augis & Nodorum, quam omnes in longitudinem & latitudinem errores apparentes) sunt in qualibet revolutione corporis P, ut quadratum temporis revolutionis quam proxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 68:10)
Si superficies ob latitudinem infinite diminutam jamjam evanescens EFfe, convolutione sui circa axem PS, describat solidum Sphaericum concavo-convexum, ad cujus particulas singulas aequales tendant aequales vires centripetae:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 65:1)
annulus autem iste est ut rectangulum sub radio AE & latitudine Ee, & hoc rectangulum (ob proportionales PE & AE, Ee & cE) aequatur rectangulo PE × cE seu PE × Ff;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 26:3)
Et quamvis motus excentrici in Spiralibus ad formam Ovalium accedentibus peragantur;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 18:2)
Unde obiter cum angulus CSB semper sit acutus, consequens est, quod si solidum ADBE convolutione figurae Ellipticae vel Ovalis ADBE circa axem AB facta generetur, & tangatur figura generans a rectis tribus FG, GH, HI in punctis F, B & I, ea lege ut GH sit perpendicularis ad axem in puncto contactus B, & FG, HI cum eadem GH contineant angulos FGB, BHI graduum 135:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 32:1)
Solidum quod figurae hujus revolutione circa axem AB facta describitur, in Medio raro & Elastico ab A versus B velocissime movendo, minus resistetur quam aliud quodvis eadem longitudine & latitudine descriptum Solidum circulare.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 34:3)
& cum aqua velocitate V describere posset spatium 2S, aqua effluens eodem tempore, velocitate sua {d ÷ e}V describere posset spatium {2d ÷ e}S. Et propterea columna aquae cujus longitudo sit {2d ÷ e}S & latitudo eadem quae foraminis, posset eo tempore defluendo egredi de vase, hoc est columna {2d ÷ e}SF.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 48:4)
Nam Cylindrus aquae, latitudine Globi & duabus tertiis partibus altitudinis descriptus, Globo aequatur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 58:7)
Arcam ligneam paravi longitudine pedum quatuor, latitudine & altitudine pedis unius.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 91:2)
Undarum velocitas est in dimidiata ratione latitudinum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 25:1)
Constituatur Pendulum cujus longitudo inter punctum suspensionis & centrum oscillationis aequetur latitudini Undarum:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 29:1)
& quo tempore pendulum illud oscillationes singulas peragit, eodem Undae progrediendo latitudinem suam propemodum conficient.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 29:2)

SEARCH

MENU NAVIGATION