라틴어 문장 검색

Si corpusculum extra Sphaeram homogeneam positum trahitur vi reciproce proportionali quadrato distantiae suae ab ipsius centro, constet autem Sphaera ex particulis attractivis;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 25:2)
Sit Fluidi cujusdam densitas compressioni proportionalis, & partes ejus a vi centripeta distantiis suis a centro reciproce proportionali deorsum trahantur:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 28:1)
Sit Fluidi cujusdam densitas compressioni proportionalis, & partes ejus a gravitate quadratis distantiarum suarum a centro reciproce proportionali deorsum trahantur:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 34:1)
distantia autem horum duorum centrorum dividitur, a communi corporum omnium centro, in partes summis totalibus corporum, quorum sunt centra, reciproce proportionales, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 28:7)
Positis iisdem attractionum legibus, dico quod corpus exterius Q, circa interiorum P, S commune Gravitatis centrum C, radiis ad centrum illud ductis, describit areas temporibus magis proportionales & Orbem ad formam Ellipseos umbilicum in centro eodem habentis magis accedentem, quam circa corpus intimum & maximum S, radiis ad ipsum ductis, describere potest.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 76:1)
Posito quod vis centripeta proportionalis sit altitudini seu distantiae locorum a centro, dico quod cadentium tempora, velocitates & spatia descripta sunt arcubus arcuumq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 33:1)
Jungantur CQ, QS, & si in QS capiatur SV proportionalis vi centripetae qua corpus trahitur versus centrum S, & agatur VT quae sit parallela CQ & occurrat SC in T:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 4:2)
Positis iisdem attractionum legibus, dico quod corpus exterius Q circa interiorum P & S commune gravitatis centrum C, radiis ad centrum illud ductis, describit areas temporibus magis proportionales, & Orbem ad formam Ellipseos umbilicum in centro eodem habentis magis accedentem, si corpus intimum & maximum his attractionibus perinde atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 79:1)
Si corpora duo S & P, viribus quadrato distantiae suae reciproce proportionalibus se mutuo trahentia, revolvuntur circa gravitatis centrum commune:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 18:1)
una tendente ad S & oriunda a mutua attractione corporum S & P. Hac vi sola corpus P, circum corpus S sive immotum, sive hac attractione agitatum, describere deberet & areas, radio PS temporibus proportionales, & Ellipsin cui umbilicus est in centro corporis S. Patet hoc per Prob. VI.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 50:10)
Particulae viribus quae sunt reciproce proportionales distantiis centrorum suorum se mutuo fugientes componunt Fluidum Elasticum, cujus densitas est compressioni proportionalis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 41:1)
Addatur vis in centrum C, cubo altitudinis CP vel Cp reciproce proportionalis, & (per jam demonstrata) detorquebitur motus ille rectilineus in lineam curvam Vpk.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 13:5)
Corpora duo quaevis circum gravitatis centrum commune gyrantia, radiis & ad centrum illud & ad se mutuo ductis, describunt areas temporibus proportionales.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 13:2)
Hypoth. V. Planetas circumjoviales, radiis ad centrum Jovis ductis, areas describere temporibus proportionales, eorumque tempora periodica esse in ratione sesquialtera distantiarum ab ipsius centro.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 가설 10:1)
Et simili argumento si figura RPB Parabola est, & eodem vertice principali B describatur alia Parabola BED, quae semper maneat data, interea dum Parabola prior in cujus perimetro corpus P movetur, diminuto & in nihilum redacto ejus Latere recto, conveniat cum linea CB, fiet segmentum Parabolicum BDEB proportionale tempori quo corpus illud P vel C descendet ad centrum B. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 7:2)

SEARCH

MENU NAVIGATION