라틴어 문장 검색

Bis enim iij vj faciunt, qui habet unam quidem a se denominatam partem, id est sextam, iij vero medietatem secundum dualitatem, at vero ij secundum coacervationem, id est secundum ternarium, quoniam coacervati iij multiplicati sunt.
(보이티우스, De Arithmetica, Liber primus, De generatione numeri perfecti. 4:4)
qui si minoris habeat medietatem, vocatur sesqualter, si vero tertiam partem, vocatur sesquitertius, si vero quartam, sesquiquartus, et si quintam, vocatur sesquiquintus;
(보이티우스, De Arithmetica, Liber primus, De superparticulari eiusque speciebus earumque generationibus. 1:2)
Sex quoque continent intra se iiij et eorum medietatem, id est ij. Et viiij intra se senarium claudunt et eius mediam partem, id est iiij;
(보이티우스, De Arithmetica, Liber primus, De superparticulari eiusque speciebus earumque generationibus. 5:4)
nam si duas medietates habuerit, qui illum intra se totum coercet, duplus pro superpartiente componitur.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 1:3)
Nam si eum habeat totum et duas eius quartas, superparticularis necessario repperitur, nam duae quartae medietas est et fit sesqualtera comparatio;
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 1:5)
In hoc quoque propter causam superius dictam non erunt duae medietates neque duae quartae neque duae sextae, sed duae tertiae vel duae quintae vel duae septimae ad priorum similem consequentiam.
(보이티우스, De Arithmetica, Liber primus, De multiplici superpartiente. 1:2)
De tertia vero propositorum terminorum summa auferemus unum primum et duos secundos, eos, qui de medietate relicti sunt, et id quod ex tertia summa relinquitur, tertium terminum constituemus.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum ad aequalitatem omnis inaequalitas reducatur 1:12)
Ternarius vero quoniam medietatem non recipit, non est alter numerus, ad quem in ratione sesqualtera comparetur.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 2:5)
Est enim ad ipsum quidem comparatus senarius numerus, ad senarium vero, quoniam medietatem habet, novenarius, et sunt duo sesqualteri, ad iiij scilicet vj, ad vj vero viiij;
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 2:7)
novenarius vero, quoniam medietate caret, ab hac comparatione seclusus est. Tertius vero duplex est viij.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 2:8)
Semper enim hoc divina quadam nec humana constitutione speculationibus occurrit, ut quotienscunque ultimus numerus invenitur, qui loco duplicis ab unitate sit par, talis sit, ut in medietates dividi secarique non possit.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 2:13)
Altrinsecus enim positis senario et ternario, id est duplici et medietate, si quaternarius in medio conlocetur, ad ternarium numerum sesquitertiam continet rationem, ad senarium vero sesqualteram.
(보이티우스, De Arithmetica, Liber secundus, Quod multiplex intervallum ex quibus superparticularibus medietate posita intervallis fiat eiusque inveniendi regula. 2:3)
Et si positis eisdem vj et xviij novenarius numerus in medietate ponatur, erit ad senarium sesqualter, qui ad xviij duplus est, et ad senarium xviij triplus est.
(보이티우스, De Arithmetica, Liber secundus, Quod multiplex intervallum ex quibus superparticularibus medietate posita intervallis fiat eiusque inveniendi regula. 4:1)
Et omnis triangularis figura vel tetragoni vel pentagoni vel exagoni vel cuiuslibet, qui pluribus angulis continetur, si a medietate per singulos angulos lineae producantur, tot eum dividunt trianguli, quot ipsam figuram angulos habere contigerit.
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:4)
Igitur cybi aequalibus se spatiis porrigentis et huius formae, quam diximus, gradata distributione dispositae medietates sunt, quae neque cunctis partibus aequales sunt, neque omnibus inaequales, quos Graeci parallelepipedos vocant.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 7:12)

SEARCH

MENU NAVIGATION