라틴어 문장 검색

) ut tangens PR, id est (ob proportionales PR ad QT & SP ad SY) ut SP × QT ÷ SY, sive ut SY reciproce & SP × QT directe; estq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 36:2)
Nam perpendicula jam sunt semi-axes minores, & hi sunt ut mediae proportionales inter distantias & latera recta.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 40:5)
In Parabola, velocitas est reciproce in dimidiata ratione distantiae corporis ab umbilico figurae, in Ellipsi minor est, in Hyperbola major quam in hac ratione.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 42:2)
in Ellipsi minor est, in Hyperbola major quam in hac ratione.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 43:4)
aequalis est velocitati corporis revolventis in circulo ad dimidiam distantiam, in Ellipsi minor est, in Hyperbola major.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 43:7)
fiet ex aequo velocitas gyrantis in Conica sectione ad velocitatem gyrantis in circulo in eadem distantia, ut media proportionalis inter distantiam illam communem & semissem lateris recti sectionis, ad perpendiculum ab umbilico communi in tangentem sectionis demissum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 45:5)
Posito quod vis centripeta sit reciproce proportionalis quadrato distantiae a centro, & quod vis illius quantitas absoluta sit cognita;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 47:1)
tangente inter umbilicos pergente, figura erit Hyperbola axem habens principalem aequalem differentiae linearum SP & PH, & inde dabitur. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 49:27)
Si ab Ellipseos vel Hyperbolae cujusvis umbilicis duobus S, H, ad punctum quodvis tertium V inflectantur rectae duae SV, HV, quarum una HV aequalis sit axi transverso figurae, altera SV a perpendiculo TR in se demisso bisecetur in T;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 3:1)
Centro P intervallo AB - SP, si orbita sit Ellipsis, vel AB + SP, si ea sit Hyperbola, describatur circulus HG.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 8:5)
Nam Trajectoria descripta (eo quod PH + SP in Ellipsi, & PH - SP in Hyperbola aequatur axi) transibit per punctum P, & (per Lemma superius) tanget rectam TR.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 8:12)
Ob datam differentiam linearum AZ, BZ, locabitur punctum Z in Hyperbola cujus umbilici sunt A & B, & axis transversus differentia illa data.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 27:3)
ZR perpendiculari ad PR, erit ex natura hujus Hyperbolae ZR ad AZ ut est MN ad AB.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 27:6)
Simili discursu punctum Z locabitur in alia Hyperbola, cujus umbilici sunt A, C & axis transversus differentia inter AZ & CZ, duciq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 27:7)
potest QS ipsi AC perpendicularis, ad quam si ab Hyperbolae hujus puncto quovis Z demittatur normalis ZS, haec fuerit ad AZ ut est differentia inter AZ & CZ ad AC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 27:8)

SEARCH

MENU NAVIGATION