라틴어 문장 검색

expertus sum) in transitu suo prope corporum vel opacorum vel perspicuorum angulos (quales sunt nummorum ex auro, argento & aere cusorum termini rectanguli circulares, & cultrorum, lapidum aut fractorum vitrorum acies) incurvantur circum corpora, quasi attracti in eadem;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 16:4)
additione & subductione generatur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 24:4)
Positis jam demonstratis, dico quod si Tangentes angulorum sectoris Circularis & sectoris Hyperbolici sumantur velocitatibus proportionales, existente radio justae magnitudinis:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 47:1)
Jungantur Dp, DP, & erit sector circularis AtD ut tempus ascensus omnis futuri;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 48:3)
Eodem argumento velocitas in ascensu est ad velocitatem, qua corpus eodem tempore in spatio non resistente omnem suum ascendendi motum amittere posset, ut triangulum ApD ad Sectorem circularem AtD, sive ut recta Ap ad arcum At.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 55:2)
Decrescit igitur area EDT uniformiter ad modum temporis futuri, per subductionem datarum particularum DTV, & propterea tempori ascensus futuri proportionalis est. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 19:10)
Decrescit igitur area EDT uniformiter singulis temporis particulis aequalibus, per subductionem particularum totidem datarum DTV, & propterea tempori proportionalis est. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 22:20)
Igitur area PIGR per datorum momentorum subductionem uniformiter decrescente, crescunt area Y in ratione PIGR - Y, & area Z in ratione PIGR - Z. Et propterea si areae Y & Z simul incipiant & sub initio aequales sint, hae per additionem aequalium momentorum pergent esse aequales, & aequalibus itidem momentis subinde decrescentes simul evanescent.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 33:1)
Quare si ad cylindri basem circularem NAO erigatur perpendiculum bHE, & sit bE aequalis radio AC, & bH aequalis BE quad.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 28:12)
Ut si base circulari CEBH, quae centro O, radio OC describitur, & altitudine OD, construendum sit frustum coni CBGF, quod omnium eadem basi & altitudine constructorum & secundum plagam axis sui versus D progredientium frustorum minime resistatur:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 31:2)
Solidum quod figurae hujus revolutione circa axem AB facta describitur, in Medio raro & Elastico ab A versus B velocissime movendo, minus resistetur quam aliud quodvis eadem longitudine & latitudine descriptum Solidum circulare.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 34:3)
A puncto A propagetur pressio quaquaversum, idque si fieri potest secundum lineas rectas, & obstaculo NBCK perforato in BC, intercipiatur ea omnis, praeter partem Coniformem APQ, quae per foramen circulare BC transit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 5:4)
in Medio vero non Elastico motum circularem excitabit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 13:2)
Igitur si fluido & cylindro exteriore quiescentibus, revolvatur cylindrus interior uniformiter, communicabitur motus circularis fluido, & paulatim per totum fluidum propagabitur;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 11:2)
Et manente causarum proportione manebit effectuum proportio, hoc est proportio motuum & periodicorum temporum. Q. E. D. Caeterum cum motus circularis, & abinde orta vis centrifuga, major sit ad Eclipticam quàm ad polos;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 18:5)

SEARCH

MENU NAVIGATION