라틴어 문장 검색

proportionalitas est duarum vel plurium proportionum similis habitudo, etiamsi non eisdem quantitatibus et differentiis constitutae sint.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:5)
Differentia vero est inter numeros quantitas.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:6)
Et secundum quantitatem quoque numeri eodem modo est. Quantum enim tres superant binarium, tantum binarius unitatem, et quanto unus a duobus minor est, tanto binarius a ternario superatur.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:16)
Secundum quantitatem vero numeri, ut sunt:
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:22)
At vero posteri propter denarii numeri perfectionem, quod erat Pythagorae conplacitus, medietates alias quattuor addiderunt, ut in his proportionalitatibus denariae quantitatis corpus efficerent.
(보이티우스, De Arithmetica, Liber secundus, Quae apud antiquos proportionalitas fuerit; quas posteriores addiderint 1:4)
Nunc vero de proportionalitatibus deque medietatibus dicendum est, et primum quidem de ea medietate tractabimus, quae secundum quantitatis aequalitatem neglecta proportionis parilitate constitutorum terminorum habitudines servat.
(보이티우스, De Arithmetica, Liber secundus, Quod primum de ea, quae vocatur arithmetica proportionalitas, dicendum sit 1:1)
In his autem quantitatibus medietas ista versatur, inque his speculanda est, in quibus a se ipsis termini differunt.
(보이티우스, De Arithmetica, Liber secundus, Quod primum de ea, quae vocatur arithmetica proportionalitas, dicendum sit 1:2)
Quid autem esset differentia terminorum superius definitum est. Hanc autem esse arithmeticam medietatem numerorum, ipsa ratio declarabit, quoniam eius proportio in numeri quantitate consistit.
(보이티우스, De Arithmetica, Liber secundus, Quod primum de ea, quae vocatur arithmetica proportionalitas, dicendum sit 1:3)
Primum, quod hanc nobis in principio ipsa numerorum natura et vis naturalis quantitatis obponit.
(보이티우스, De Arithmetica, Liber secundus, Quod primum de ea, quae vocatur arithmetica proportionalitas, dicendum sit 1:5)
Est autem proprium huius medietatis, quod, si in tribus terminis speculatio sit, compositis extremitatibus illa summa, quae inter extremitates est, non loco tantum verum etiam sit quantitate medietas.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 4:1)
in minoribus enim terminis minores proportiones, in maioribus maior proportionis quantitas custoditur.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 6:5)
Hic enim aequa semper proportio custoditur, numeri quantitas multitudoque neglegitur, contrarie quam in arithmetica medietate, ut sunt j ij iiij viij xvj xxxij lxiiij vel in tripla proportione j iij viiij xxvij lxxxj vel si quadrupla vel si quincupla vel si in quamlibet multiplicitatem numerorum sit constituta distensio.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 1:2)
Namque binarius ad unitatem ipsa unitate differt, et quaternarius binario ipso binario et octonarius quaternario ipso quaternario et deinceps maiores alii ipsis minoribus ab eisdem ipsis differunt, quos numerositate praetereunt.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 9:3)
In hac enim dispositione armonica, quae est ij iij vj ternarius binarium tertia sui parte vincit, idem ternarius a senario tota sui quantitate superatur, id est tribus, idemque ipse ternarius medietate minoris vincit minorem, id est uno, et medietate maioris a maiore termino vincitur, id est tribus.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:15)
Habet autem aliam proprietatem armonica medietas, ut cum duas extremitates in unum redactas medietas multiplicaverit, dupla quantitas colligatur, quam si se multiplicent duae extremitates.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:18)

SEARCH

MENU NAVIGATION