라틴어 문장 검색

& in Lemmate quarto densitates esse ut gravitates illae applicatae ad diametros veras:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 40:5)
Fingatur quod cubus vis comprimentis sit ut quadrato-cubus densitatis, & si gravitas est reciproce ut quadratum distantiae, densitas erit reciproce in sesquiplicata ratione distantiae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 39:28)
Fingatur quod vis comprimens sit in duplicata ratione densitatis, & gravitas reciproce in ratione duplicata distantiae, & densitas erit reciproce ut distantia.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 39:29)
Nam si spatia omnia plena essent, gravitas specifica fluidi quo regio aeris impleretur, ob summam densitatem materiae, nil cederet gravitati specificae argenti vivi, vel auri, vel corporis alterius cujuscunque densissimi;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 25:3)
Sit Fluidi cujusdam densitas compressioni proportionalis, & partes ejus a gravitate quadratis distantiarum suarum a centro reciproce proportionali deorsum trahantur:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 34:1)
Quo in casu, si gravitas est reciproce ut quadratum distantiae a centro, densitas erit reciproce ut cubus distantiae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 39:27)
Augetur vero proportio resistentiae ad pondus, ubi vel gravitas specifica sub aequali magnitudine fit minor, vel Medii densitas major, vel resistentia, ex magnitudine diminuta, diminuitur in minore ratione quam pondus.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 95:8)
propterea quod, si materia ad centrum redundans, qua densitas ibi major redditur, subducatur & seorsim spectetur, gravitas in Terram reliquam uniformiter densam erit reciprocè ut distantia ponderis à centro;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 38:17)
Si gravitas sit ut distantia, & quadrata distantiarum sint in progressione Arithmetica, densitates erunt in progressione Geometrica.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 39:23)
Rursus si gravitas particularum Fluidi in omnibus distantiis eadem sit, & distantiae sint in progressione Arithmetica, densitates erunt in progressione Geometrica, uti Vir Cl.\ Edmundus Halleius invenit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 39:22)
Igitur si corpus C certa cum velocitate, secundum lineam ipsi OK parallelam, exeat de loco L, & Medii densitas in singulis locis C sit ut longitudo tangentis CT, & resistentia etiam in loco aliquo C sit ad vim gravitatis ut OB ad OK;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 72:2)
eo ut progressio gravitatum specificarum a fundo A ad summitatem Fluidi continua reddatur, & in distantiis quibusvis continue proportionalibus SA, SD, SQ, densitates AH, DL, QT, semper existentes continue proportionales, manebunt etiamnum continue proportionales. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 30:28)
At postquam Motuum Lunarium inaequalitates aggressus essem, deinde etiam alia tentare caepissem quae ad leges mensuras Gravitatis & aliarum virium, ad figuras a corporibus secundum datas quascunque leges attractis describendas, ad motus corporum plurium inter se, ad motus corporum in Mediis resistentibus, ad vires, densitates & motus Mediorum, ad Orbes Cometarum & similia spectant, editionem in aliud tempus differendam esse putavi, ut caetera rimarer & una in publicum darem.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 서문 2:3)
Sic in Problemate jam solvendo, si scribantur [sqrt]1 + aa ÷ ee seu n ÷ e pro [sqrt]{1 + QQ}, nn ÷ 2e^3 pro R, & ann ÷ 2e^3 pro S, prodibit Medii densitas ut a ÷ ne, hoc est (ob datam n) ut a ÷ e seu OB ÷ BC, id est ut Tangentis longitudo illa CT, quae ad semidiametrum OL ipsi AK normaliter insistentem terminatur, & resistentia erit ad gravitatem ut a ad n, id est ut OB ad circuli semidiametrum OK, velocitas autem erit ut [sqrt]2BC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 72:1)
Succensa est enim quasi ignis impietas, veprem et spinam vorat, et succenditur in densitate saltus, et convolvuntur columnae fumi.
정녕 사악함이 불처럼 타올라 가시덤불과 엉겅퀴를 집어삼키고 잡목 숲을 사르니 연기 기둥이 휘돌며 치솟는다. (불가타 성경, 이사야서, 9장17)

SEARCH

MENU NAVIGATION