라틴어 문장 검색

Pars autem tertia ALB ÷ LD ducta itidem per motum localem normaliter in eandem longitudinem, describet aream Hyperbolicam;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 82:11)
Si ducantur hujus partes tres in longitudinem AB, prima LSI ÷ LD generabit aream Hyperbolicam;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 88:1)
velocitas in fine temporis exponetur per ordinatam DG, & spatium totum descriptum per aream Hyperbolicam adjacentem ABGD;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 5:3)
Unde datur spatium in Medio resistente descriptum, capiendo illud ad spatium quod velocitate uniformi AB in Medio non resistente simul describi posset, ut est area Hyperbolica ABGD ad rectangulum AB × AD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 6:2)
Atqui areae Hyperbolicae KNOL ad rectangulum KL × KN ratio ultima, ubi coeunt puncta K & L, est aequalitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 40:12)
Hinc si spatium descriptum exponatur per aream Hyperbolicam ABNK;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 41:2)
Et si tempus exponatur per aream Hyperbolicam ABED uniformiter crescentem;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 4:3)
Igitur si datis punctis A, G, exponatur tempus per aream Hyperbolicam ABED, exponi potest velocitas per ipsius GD reciprocam 1 ÷ GD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 6:2)
In Asymptoto CD detur punctum R, & erecto perpendiculo RS, quod occurrat Hyperbolae in S, exponatur descriptum spatium per aream Hyperbolicam RSED;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 10:1)
Igitur si velocitas exponatur per longitudinem GD, spatium descriptum erit ut area Hyperbolica DESR.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 12:2)
Et si lineae SA, SE, SQ obtinent alium quemvis ordinem in serie continue proportionalium, lineae AH, EM, QT, ob proportionales areas Hyperbolicas, obtinebunt eundem ordinem in alia serie quantitatum continue proportionalium.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 32:6)
id est, si ad constituendum Medium uniformiter fluidum orbium numerus augeatur & latitudo minuatur in infinitum, ut areae Hyperbolicae his summis Analogae AaQ, BbQ, CcQ, DdQ, EeQ, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 6:13)
id est (si ad constituendum Medium uniformiter fluidum, numerus Orbium augeatur & latitudo minuatur in infinitum) ut areae Hyperbolicae his summis analogae AaQ, BbQ, CcQ, DdQ, EeQ, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 16:15)
& rectangulum 2ASI subductum de area Hyperbolica AasbB relinquet aream quaesitam ABNA.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 90:6)
Ergo area illa Hyperbolica evanescens est ut AP.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 40:13)

SEARCH

MENU NAVIGATION