라틴어 문장 검색

quae huic areae proportionalis est, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:5)
Ergo vis huic areae proportionalis est ut AB - PE + PD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 34:11)
proportionalis area DPQ, est ut excessus gravitatis supra resistentiam, id est, ut DBq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 25:2)
Sed his areis proportionales semper sunt areae ABD, ACE, & his lateribus latera AD, AE.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 41:6)
) corpus illud alterum vel quiescet vel movebitur uniformiter in directum, & corpus primum, urgente differentia virium, perget areas temporibus proportionales circa corpus alterum describere.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 15:5)
Hinc si corpus unum radio ad alterum ducto describit areas temporibus proportionales, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 16:2)
spatium AC, quod corpus de loco A perpendiculariter cadendo tempore dato describit, si modo tempori proportionalis capiatur area ABD, & a puncto D ad rectam AB demittatur perpendicularis DC. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 4:11)
Proinde area BDEB proportionalis erit tempori quo corpus C recto descensu describit lineam CB. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 6:6)
Dato igitur tempore quovis ex quo corpus discessit de loco V, dabitur area ipsi proportionalis VDba, & inde dabitur corporis altitudo CD vel CI;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 10:25)
Cum area tempori proportionalis sit quam linea Cp in plano immobili describit, manifestum est quod corpus, cogente justae quantitatis vi centripeta, revolvi possit una cum puncto p in curva illa linea quam punctum idem p ratione jam exposita describit in plano immobili.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 3:6)
Ergo si SNn sit curva illa linea quam punctum N perpetuo tangit, erit area SNDS proportionalis tempori quo corpus descendendo descripsit lineam ST;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 51:10)
dico quod parallela illa aream tempori proportionalem describet.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 53:4)
Corpora duo quaevis circum gravitatis centrum commune gyrantia, radiis & ad centrum illud & ad se mutuo ductis, describunt areas temporibus proportionales.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 13:2)
radiis ad idem ductis describent areas temporibus proportionales;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 40:10)
Hyperbolam vel Parabolam attractione languida, Ellipsim fortiore,) & Radio ad maximum ducto, verret areas temporibus proportionales, absq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 41:9)

SEARCH

MENU NAVIGATION