라틴어 문장 검색

Ostia, id est postes, habebant quadruplicem marginem.
모든 문과 문설주는 네모꼴이고, 석 줄 창문은 저마다 마주 보았다. (불가타 성경, 열왕기 상권, 7장5)
postes portae quadruplices, et coram sanctuario aspectus quasi aspectus
그리고 성소에는 네모난 문설주가 있었다. 지성소 앞에는 (불가타 성경, 에제키엘서, 41장21)
quae sit earum , quae obsidionalis, quae civica, quae muralis, quae castrensis, quae navalis, quae ovalis, quae oleaginea.
(아울루스 겔리우스, 아테네의 밤, Liber Quintus, VI 1:2)
est ea quoque corona quae ovalis dicitur, est item postrema oleaginea, qua uti solent qui in proelio non fuerunt sed triumphum procurant.
(아울루스 겔리우스, 아테네의 밤, Liber Quintus, VI 4:1)
Ovalis corona murtea est;
(아울루스 겔리우스, 아테네의 밤, Liber Quintus, VI 23:1)
Hoc igitur cum in terminis aequalibus feceris, ex his qui nascentur, duplices erunt, de quibus duplicibus si idem feceris, triplices procreantur et de his quadruplices atque in infinitum omnes formas numeri multiplicis explicabit.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 1:13)
Angulares autem omnium multiplices evenire necesse est. Erunt autem duplicium quidem triplices, triplicium quadruplices, quadruplorum vero quincupli et secundum eandem ordinis incommutabilem rationem sibimet cuncta consentient.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 23:6)
Nulla extat figura Ovalis cujus area, rectis pro lubitu abscissa, possit per aequationes numero terminorum ac dimensionum finitas generaliter inveniri.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 9:1)
Intra Ovalem detur punctum quodvis, circa quod ceu polum revolvatur perpetuo linea recta, & interea in recta illa exeat punctum mobile de polo, pergatq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:1)
semper ea cum velocitate, quae sit ut rectae illius intra Ovalem longitudo.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:2)
Jam si area Oualis per finitam aequationem inveniri potest, invenietur etiam per eandem aequationem distantia puncti a polo;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:4)
Nequit ergo intersectio rectae & spiralis per aequationem finitam generaliter inveniri, & idcirco nulla extat Ovalis cujus area, rectis imperatis abscissa, possit per talem aequationem generaliter exhiberi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:25)
Eodem argumento, si intervallum poli & puncti, quo spiralis describitur, capiatur Ovalis perimetro abscissae proportionale, probari potest quod longitudo perimetri nequit per finitam aequationem generaliter exhiberi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 11:1)
Isto autem in casu, longitudo arcus Cycloidis, inter planum illud & punctum describens, aequalis evadet quadruplicato sinui verso dimidii arcus Rotae inter idem planum & punctum describens;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 39:5)
Si Vis centripeta, ad singulas Sphaerae particulas tendens, decrescit in quadruplicata ratione distantiae a particulis, scribe PE^4 ÷ 2AS^3 pro V, dein [sqrt]2PS × LD pro PE, & fiet DN ut
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 91:2)

SEARCH

MENU NAVIGATION