라틴어 문장 검색

segmenta et longos habitus et flammea sumit arcano qui sacra ferens nutantia loro sudavit clupeis ancilibus.
(유베날리스, 풍자, 1권, Satura II70)
Corpus viribus conjunctis diagonalem parallelogrammi eodem tempore describere, quo latera separatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 12:1)
Si corpus dato tempore, vi sola M, ferretur ab A ad B, & vi sola N, ab A ad C, compleatur parallelogrammum ABDC, & vi utraq;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 13:1)
Si in figura quavis AacE rectis Aa, AE, & curva acE comprehensa, inscribantur parallelogramma quotcunq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 6:1)
& compleantur parallelogramma aKbl, bLcm, cMdn, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 6:6)
Dein horum parallelogrammorum latitudo minuatur, & numerus augeatur in infinitum:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 6:7)
Nam figurae inscriptae & circumscriptae differentia est summa parallelogrammorum Kl + Lm + Mn + Do, hoc est (ob aequales omnium bases) rectangulum sub unius basi Kb & altitudinum summa Aa, id est rectangulum ABla.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 7:1)
Eaedem rationes ultimae sunt etiam aequalitatis, ubi parallelogrammorum latitudines AB, BC, CD, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 9:1)
Sit enim AF aequalis latitudini maximae & compleatur parallelogrammum FAaf.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 10:1)
Hinc summa ultima parallelogrammorum evanescentium coincidit omni ex parte cum figura curvilinea.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 11:2)
Si in duabus figuris AacE, PprT, inscribantur (ut supra) duae parallelogrammorum series, sitq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 16:1)
Etenim ut sunt parallelogramma singula ad singula, ita (componendo) fit summa omnium ad summam omnium, & ita figura ad figuram;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 18:1)
Unde si per B ducatur tangenti parallela BF rectam quamvis AF per A transeuntem perpetuo secans in F, haec ultimo ad arcum evanescentem AB rationem habebit aequalitatis, eo quod completo parallelogrammo AFBD, rationem semper habet aequalitatis ad AD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 30:2)
erunt areae ultimae curvilineae ADB, Adb (ex natura Parabolae) duae tertiae partes triangulorum rectilineorum ADB, Adb, & segmenta AB, Ab partes tertiae eorundem triangulorum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 55:3)
Et inde hae areae & haec segmenta erunt in triplicata ratione tum tangentium AD, Ad;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 55:4)

SEARCH

MENU NAVIGATION