라틴어 문장 검색

Postquam autem Problema solvitur in figura nova, si per inversas operationes transmutetur haec figura in figuram primam, habebitur Solutio quaesita.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 68:6)
Nam quoties duae sectiones conicae obvenerint, quarum intersectione Problema solvi potest, transmutare licet unum earum in circulum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 69:2)
adhibita pro radio ordinato primo, transmutetur figura, per Lemma superius, in figuram novam.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 73:2)
Ab intersectione communi duarum quarumlibet tangentium ad intersectionem communem reliquarum duarum agatur recta infinita, & eadem pro radio ordinato primo adhibita, transmutetur figura (per Lem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 76:1)
vis autem altera IT, secundum corporis cursum agendo, tota accelerabit illud, ac dato tempore quam minimo accelerationem generabit sibi ipsi proportionalem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 4:14)
Proinde corporum in D & I accelerationes aequalibus temporibus factae (si sumantur linearum nascentium DE, IN, IK, IT, NT rationes primae) sunt ut lineae DE, IT:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 4:15)
accelerationes, in cursu corporum per lineas DE & IK, sunt ut DE & IT, DE & IK conjunctim, id est ut DE quad.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 4:18)
Sed rectangulum IT × IK aequale est IN quadrato, hoc est, aequale DE quadrato & propterea accelerationes in transitu corporum a D & I ad E & K aequales generantur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 4:20)
manifestum est quod corporis acceleratio huic vi acceleratrici proportionalis sit singulis momentis ut longitudo TX, id est, ob datas CV, WV iisq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 29:5)
Pendulis igitur duabus APT, Apt de perpendiculo AR inaequaliter deductis & simul dimissis, accelerationes eorum semper erunt ut arcus describendi TR, tR.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 29:8)
Sunt igitur accelerationes atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 29:11)
si vires absolutae diversorum globorum ponantur inaequales, accelerationes temporibus aequalibus factae, erunt ut vires.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 37:2)
Proinde cum haec sit ut via describenda TR, accelerationes corporis vel retardationes in Oscillationum duarum (majoris & minoris) partibus proportionalibus describendis, erunt semper ut partes illae, & propterea facient ut partes illae simul describantur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 45:3)
Hac lege punctum quodvis E eundo ab E per [epsilon] ad e, & inde redeundo per [epsilon] ad E iisdem accelerationis ac retardationis gradibus, vibrationes singulas peraget cum oscillante Pendulo.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 43:12)
partes fluidi non prius perseverabunt in motibus suis sine acceleratione & retardatione, quàm sint eorum tempora periodica ut quadrata distantiarum à centro vorticis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 25:4)

SEARCH

MENU NAVIGATION