라틴어 문장 검색

Atqui recta omnis infinite producta spiralem secat in punctis numero infinitis, & aequatio, qua intersectio aliqua duarum linearum invenitur, exhibet earum intersectiones omnes radicibus totidem, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:8)
Quoniam circuli duo se mutuo secant in punctis duobus, intersectio una non invenitur nisi per aequationem duarum dimensionum, qua intersectio altera etiam inveniatur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:10)
Quoniam duarum sectionum Conicarum quatuor esse possunt intersectiones, non potest aliqua earum generaliter inveniri nisi per aequationem quatuor dimensionum, qua omnes simul inveniantur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:11)
Eadem de causa intersectiones binae rectarum & sectionum Conicarum prodeunt semper per aequationes duarum dimensionum;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:16)
Ergo intersectiones numero infinitae rectarum, propterea quod omnium eadem est lex & idem calculus, requirunt aequationes numero dimensionum & radicum infinitas, quibus omnes possunt simul exhiberi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:18)
nec interea mutabitur aequatio nisi pro mutata magnitudine quantitatum per quas positio secantis determinatur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:21)
Unde cum quantitates illae post singulas revolutiones redeunt ad magnitudines primas, aequatio redibit ad formam primam, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:22)
Eodem argumento, si intervallum poli & puncti, quo spiralis describitur, capiatur Ovalis perimetro abscissae proportionale, probari potest quod longitudo perimetri nequit per finitam aequationem generaliter exhiberi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 11:1)
Hinc area Ellipseos, quae radio ab umbilico ad corpus mobile ducto describitur, non prodit ex dato tempore, per aequationem finitam;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 13:1)
Curvas Geometrice rationales appello quarum puncta omnia per longitudines aequationibus definitas, id est, per longitudinum rationes complicatas, determinari possunt;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 13:3)
Nam concipe corpus C quam minima temporis particula lineolam Cc cadendo describere, & interea corpus aliud K, uniformiter in circulo OKk circa centrum S gyrando, arcum Kk describere.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 20:1)
& ex aequo velocitas prima ad ultimam, hoc est lineola Cc ad arcum Kk in dimidiata ratione AC ad SC, id est in ratione AC ad CD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 21:8)
¼CD × Cc aequalem esse ½SY × Dd. Sed corporis cadentis velocitas in C aequalis est velocitati qua circulus intervallo ½SC uniformiter describi possit (per Theor. X.) Et haec velocitas ad velocitatem qua circulus radio SK describi possit, hoc est, lineola Cc ad arcum Kk est in dimidiata ratione SK ad ½Sc, id est, in ratione SK ad ½CD, per Corol. 6.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 23:3)
Porro cum tempus, quo quaelibet longitudinis datae lineola DE describatur, sit ut velocitas, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 43:1)
descripsit lineolam DE ad tempus quo corpus alterum inaequabili motu descripsit lineam De ut area DLME ad aream DLme, & ex aequo tempus primum ad tempus ultimum ut rectangulum 2PD × DL ad aream DLme.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 46:7)

SEARCH

MENU NAVIGATION