라틴어 문장 검색

Aethera tangentes silvas liquere Coatrae.
(마르쿠스 안나이우스 루카누스, 파르살리아, 3권 3:39)
Nam litoreis populator arenis Imminet, et, nulla portus tangente carina, Novit epes.
(마르쿠스 안나이우스 루카누스, 파르살리아, 9권 5:18)
nam per utramque labitur, id est inter duas, maiorem cauda tangens, alvo conplectens minorem.
(마우루스 세르비우스 호노라투스, Commentary on the Georgics of Vergil, 1권, commline 2452)
hanc Aries tegit et squamoso corpore Pisces Fluminis inlustri tangentem corpore ripas.
(마르쿠스 툴리우스 키케로, 신의 본질에 관하여, LIBER SECUNDUS 114:3)
Aqua non petebat circumferentiam ascendendo ad latera vasis, sed plana manebat, & propterea motus illius circularis verus nondum inceperat.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 정의 41:12)
Ut & figura rectilinea quae tangentibus eorundem arcuum circumscribitur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 13:2)
dico quod angulus BAD sub chorda & tangente contentus minuetur in infinitum & ultimo evanescet.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 24:4)
Iisdem positis, dico quod ultima ratio arcus, chordae & tangentis ad invicem est ratio aequalitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 27:1)
Unde si per B ducatur tangenti parallela BF rectam quamvis AF per A transeuntem perpetuo secans in F, haec ultimo ad arcum evanescentem AB rationem habebit aequalitatis, eo quod completo parallelogrammo AFBD, rationem semper habet aequalitatis ad AD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 30:2)
Et si per B & A ducantur plures rectae BE, BD, AF, AG, secantes tangentem AD & ipsius parallelam BF, ratio ultima abscissarum omnium AD, AE, BF, BG, chordaeq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 31:2)
Si rectae datae AR, BR cum arcu AB, chorda AB & tangente AD, triangula tria ARB, ARB, ARD constituunt, dein puncta A, B accedunt ad invicem:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 35:1)
Huic subtensae AB & tangenti AD perpendiculares erigantur AG, BG, concurrentes in G;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 50:3)
Unde cum tangentes AD, Ad, arcus AB, Ab & eorum sinus BC, bc fiant ultimo chordis AB, Ab aequales;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 53:2)
Et inde hae areae & haec segmenta erunt in triplicata ratione tum tangentium AD, Ad;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 55:4)
Caeterum in his omnibus supponimus angulum contactus nec infinite majorem esse angulis contactuum, quos circuli continent cum tangentibus suis, nec iisdem infinite minorem;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 57:1)

SEARCH

MENU NAVIGATION