라틴어 문장 검색

summa virium in dato tempore erit ut velocitas illa & numerus reflexionum conjunctim, hoc est (si Polygonum detur specie) ut longitudo dato illo tempore descripta & longitudo eadem applicata ad Radium circuli, id est ut quadratum longitudinis illius applicatum ad Radium;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 36:5)
in figura indefinite parva QRPT lineola nascens QR, dato tempore, est ut vis centripeta (per Leg. II.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 45:2)
adeo, neutro dato, ut vis centripeta & quadratum temporis conjunctim, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 45:4)
vis centripeta ut lineola QR directe & quadratum temporis inverse.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 45:5)
Est autem tempus ut area SPQ, ejus dupla SP × QT, id est ut SP & QT conjunctim, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 45:6)
Patet EP aequalem esse semiaxi majori AC, eo quod acta ab altero Ellipseos umbilico H linea HI ipsi EC parallela, (ob aequales CS, CH) aequentur ES, EI, adeo ut EP semisumma sit ipsarum PS, PI, id est (ob parallelas HI, PR & angulos aequales IPR, HPZ) ipsorum PS, PH, quae conjunctim axem totum 2AC adaequant.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 4:2)
Et si velocitas, quacum corpus exit de loco suo P, ea sit, qua lineola PR in minima aliqua temporis particula describi possit, & vis centripeta potis sit eodem tempore corpus idem movere per spatium QR:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 25:2)
÷ QR quae ultimo fit ubi lineolae PR, QR in infinitum diminuuntur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 25:4)
ut rectangulum XHY ad rectangulum BHD (seu rectangulum CGP ad rectangulum DGB) & rectangulum BHD ad rectangulum PIC conjunctim.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 57:8)
Nam concipe corpus C quam minima temporis particula lineolam Cc cadendo describere, & interea corpus aliud K, uniformiter in circulo OKk circa centrum S gyrando, arcum Kk describere.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 20:1)
& ex aequo velocitas prima ad ultimam, hoc est lineola Cc ad arcum Kk in dimidiata ratione AC ad SC, id est in ratione AC ad CD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 21:8)
¼CD × Cc aequalem esse ½SY × Dd. Sed corporis cadentis velocitas in C aequalis est velocitati qua circulus intervallo ½SC uniformiter describi possit (per Theor. X.) Et haec velocitas ad velocitatem qua circulus radio SK describi possit, hoc est, lineola Cc ad arcum Kk est in dimidiata ratione SK ad ½Sc, id est, in ratione SK ad ½CD, per Corol. 6.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 23:3)
Porro cum tempus, quo quaelibet longitudinis datae lineola DE describatur, sit ut velocitas, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 43:1)
descripsit lineolam DE ad tempus quo corpus alterum inaequabili motu descripsit lineam De ut area DLME ad aream DLme, & ex aequo tempus primum ad tempus ultimum ut rectangulum 2PD × DL ad aream DLme.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 46:7)
Exponantur hae vires per aequales lineolas DE, IN;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 4:8)

SEARCH

MENU NAVIGATION