라틴어 문장 검색

conum tibi ais et cylindrum et pyramidem pulchriorem quam sphaeram videri.
(마르쿠스 툴리우스 키케로, 신의 본질에 관하여, LIBER SECUNDUS 47:5)
tenebam enim quosdam senariolos, quos in eius monumento esse inscriptos acceperam, qui declarabant in summo sepulcro sphaeram esse positam cum cylindro.
(마르쿠스 툴리우스 키케로, 투스쿨라눔의 대화, 5권 64:3)
ego autem cum omnia conlustrarem oculis - est enim ad portas Agragantinas magna frequentia sepulcrorum - , animum adverti columellam non multum e dumis eminentem, in qua inerat sphaerae figura et cylindri.
(마르쿠스 툴리우스 키케로, 투스쿨라눔의 대화, 5권 65:1)
de Sphaera & Cylindro.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 67:3)
Unde si solidum Cylindrus sit, parallelogrammo ADEB circa axem AB revoluto descriptus, & vires centripetae in singula ejus puncta tendentes sint reciproce ut quadrata distantiarum a punctis:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 34:2)
erit attractio corpusculi P in hunc Cylindrum ut BA - PE + PD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 34:3)
E corpore dato formanda est Sphaera vel Cylindrus aliave figura regularis, cujus lex attractionis, cuivis decrementi rationi congruens (per Prop. LXXX.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 43:1)
sustinet fundum pondus Cylindri, cujus basis aequalis est superficiei fundi, & altitudo eadem quae Fluidi incumbentis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 15:2)
hoc est gravitati solidi cujus ultima ratio ad Cylindrum praefinitum, (si modo Orbium augeatur numerus & minuatur crassitudo in infinitum, sic ut actio gravitatis a superficie infima ad supremam continua reddatur) fiet ratio aequalitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 17:11)
Sustinet ergo superficies infima pondus cylindri praefiniti. Q. E. D. Et simili argumentatione patet Propositio, ubi gravitas decrescit in ratione quavis assignata distantiae a centro, ut & ubi Fluidum sursum rarius est, deorsum densius. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 17:12)
erit resistentia Globi duplo minor quam resistentia Cylindri.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 26:2)
In ea capiatur LB semidiametro CB aequalis, & ducatur BD quae Sphaeram tangat in B. In AC & BD demittantur perpendiculares BE, DL, & vis qua particula Medii, secundum rectam FB oblique incidendo, Globum ferit in B, erit ad vim qua particula eadem Cylindrum ONGQ axe ACI circa Globum descriptum perpendiculariter feriret in b, ut LD ad LB vel BE ad BC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 28:9)
Et conjunctis rationibus, efficacia particulae, in globum secundum rectam FB oblique incidentis, ad movendum eundem secundum plagam incidentiae suae, est ad efficaciam particulae ejusdem secundum eandem rectam in cylindrum perpendiculariter incidentis, ad ipsum movendum in plagam eandem, ut BE quadratum ad BC quadratum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 28:11)
Quare si ad cylindri basem circularem NAO erigatur perpendiculum bHE, & sit bE aequalis radio AC, & bH aequalis BE quad.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 28:12)
÷ CB, erit bH ad bE ut effectus particulae in globum ad effectum particulae in cylindrum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 28:13)

SEARCH

MENU NAVIGATION