라틴어 문장 검색

Inpar vero numerus est, cui hoc quidem accidere non potest, sed cuius in duas inaequales summas naturalis est sectio.
(보이티우스, De Arithmetica, Liber primus, Definito numeri paris et inparis secundum Pythagoram. 1:3)
Par numerus est, qui in duo aequalia et in duo inaequalia partitionem recipit, sed ut in neutra divisione vel in paritati paritas vel paritati inparitas misceatur, praeter solum paritatis principem, binarium numerum, qui in aequalem non recipit sectionem, propterea quod ex duabus unitatibus constat et ex prima duoroum quoddammmodo paritate.
(보이티우스, De Arithmetica, Liber primus, Alia secundum antiquiorem modum divisio paris et inparis 1:2)
sed binarius unitatis medietate dividitur, quae unitas naturaliter singularis non recipit sectionem.
(보이티우스, De Arithmetica, Liber primus, De numero pariter pari eiusque proprietatibus. 1:4)
Illud autem non minima consideratione dignum est, quod eius omnis pars ab una parte quacunque, quae intra ipsum numerum est, denominatur tantamque summam quantitatis includit, quota pars est alter numerus pariter paris illius, qui eum respondeant, ut quota pars una est, tantam habeat altera quantitatem, et quota pars ista est, tanum in priore summa necesse sit multitudinis inveniri.
(보이티우스, De Arithmetica, Liber primus, De numero pariter pari eiusque proprietatibus. 13:1)
Nam quoniam par est, in partes aequalies recipit sectionem, partes vero eius mox indivisibiles aque insecabiles permanebunt, ut sunt vj x xiiij xviij xxij et his similes.
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 1:3)
Accidit autem his quod omnes partes contrarie denominantas habent, quam sunt tantitates ipsarum partium, quae denominantur.
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 1:5)
ij vj x xiiij xviij xxij, quos si dividas, unam recipient sectionem ceteram repudiantes, quod secunda divisio ab inparis medietate partis excluditur.
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 4:5)
Contrariae vero esse dicuntur hae species numerorum, id est pariter par et pariter inpar, quod in numero pariter inpari sola divisionem recipit maior extremitas, in illo vero solus minor terminus sectione solutus est, et quod in forma pariter paris numeri ab extremitatibus incipienti et usque ad media progredienti, quod continentur sub extremis terminis, idem est illi, quod continentur sub intra se positis summulis atque hoc idem usquedum ad duas medietates fuerit ventum in dispositionibus scilicet paribus;
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 4:10)
Igitur in eo, quod plus quam unam suscipit sectionem, habet similitudinem pariter paris, sed a pariter inpari segregatur;
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 1:5)
in eo vero, quod usque ad unum sectio illa non ducitur, pariter inparem non refutat, sed a pariter pari disiungitur.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 1:6)
Nam et partes solvuntur et usque ad unitatem sectio illa non pervenit, sed ante unitatem invenitur terminus, quem secare non possis.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 1:9)
Obtinet autem, quae illi quoque recipiunt, quod quaedam partes eius respondent denominanturque secundum genus suum ad propriam quantitatem, ad similitudinem scilicet pariter paris numeri, aliae vero partes contrarium denominationem sumunt propriae quantitatis, ad pariter inparis scilicet formam.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 1:10)
In xxiiij enim numero par est quantitas partis a pari numero denominata.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 1:11)
Contrarie vero denominantur, ut tertia pars viij, octava vero iij. Vicesima autem quarta j quae denominationes cum pares sint, inveniuntur inpares quantitates, et cum sint pares summae, sunt inpares denominationes.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 1:13)
Et primus quidem et incompositus est, qui nullam aliam partem habet nisi eam, quae a tota numeri quantitate denominata sit, ut ipsa pars non sit nisi untias, ut sunt iij v vij xj xiij xvij xviiij xxiij xxviiij xxxj.
(보이티우스, De Arithmetica, Liber primus, De prime et incompositio 1:1)

SEARCH

MENU NAVIGATION