라틴어 문장 검색

a centro, & hac sola vi agente Corpus T oscilletur (modo jam descripto) in perimetro Cycloidis QRS:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 28:3)
Est ergo tempus totum in circulo HKM, Oscillationi in una Cycloide respondens, ad tempus totum in circulo hkm Oscillationi in altera Cycloide respondens, ut semiperiferia HKM ad medium proportionale inter hanc semiperiferiam & semiperiferiam circuli alterius hkm, id est in dimidiata ratione diametri HM ad diametrum hm, hoc est in dimidiata ratione perimetri Cycloidis primae ad perimetrum Cycloidis alterius, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 35:11)
Revolutionum vero tempora erunt ut Perimetri orbitarum AEB, BFC, CGD &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 16:6)
describe circulos quotcunque, & statue numerum revolutionum inter perimetros duorum quorumvis ex his circulis, in Medio de quo egimus, esse ad numerum revolutionum inter eosdem in Medio proposito, ut Medii propositi densitas mediocris inter hos circulos ad Medii, de quo egimus, densitatem mediocrem inter eosdem quam proxime;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 17:4)
Ipsius autem theatri conformatio sic est facienda, uti, quam magna futura est perimetros imi, centro medio conlocato circumagatur linea rotundationis, in eaque quattuor scribantur trigona paribus lateribus, intervallis extremam lineam circinationis tangant, quibus etiam in duodecim signorum caelestium astrologi ex musica convenientia astrorum ratiocinantur.
(비트루비우스 폴리오, 건축술에 관하여, LIBER QUINTUS, 6장1)
adeo ut Cycloidum perimetri & perimetrorum partes similes, aequalia erunt tempora quibus perimetrorum partes similes Oscillationibus similibus describuntur, & propterea Oscillationes omnes erunt Isochronae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 36:3)
ea in perimetro HIK aequalis vi centripetae in perimetro globi QOS (Vide Fig. Prop. L. & LI.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 33:3)
Eodem argumento, si intervallum poli & puncti, quo spiralis describitur, capiatur Ovalis perimetro abscissae proportionale, probari potest quod longitudo perimetri nequit per finitam aequationem generaliter exhiberi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 11:1)
quoniam earum perimetri sunt ut semidiametri globorum & vires in analogis perimetrorum locis sunt ut distantiae locorum a communi globorum centro, hoc est ut globorum semidiametri, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 36:2)

SEARCH

MENU NAVIGATION