라틴어 문장 검색

Sic in Problemate jam solvendo, si scribantur [sqrt]1 + aa ÷ ee seu n ÷ e pro [sqrt]{1 + QQ}, nn ÷ 2e^3 pro R, & ann ÷ 2e^3 pro S, prodibit Medii densitas ut a ÷ ne, hoc est (ob datam n) ut a ÷ e seu OB ÷ BC, id est ut Tangentis longitudo illa CT, quae ad semidiametrum OL ipsi AK normaliter insistentem terminatur, & resistentia erit ad gravitatem ut a ad n, id est ut OB ad circuli semidiametrum OK, velocitas autem erit ut [sqrt]2BC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 72:1)
÷ AI}, ac resistentia ibidem ad Gravitatem ut AH ad {3nn + 3n} ÷ {n + 2} in AI.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 92:4)
Si corpus Funependulum in Cycloide oscillans resistitur in ratione momentorum temporis, erit ejus resistentia ad vim gravitatis ut excessus arcus descensu toto descripti supra arcum ascensu subsequente descriptum, ad penduli longitudinem duplicatam.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 25:1)
& si in DE capiatur DK in ea ratione ad longitudinem penduli quam habet resistentia ad gravitatem, erit DK exponens resistentiae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 42:4)
principiis singularum partium (addendo resistentiam Medii ad vim gravitatis, quando corpus ascendit, vel subducendo ipsam quando corpus descendit) colligantur vires absolutae;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 38:2)
÷ GV}, resistentia autem ad vim gravitatis ut GT ad {{3nn + 3n} ÷ {n + 2}}GV.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 91:3)
acceleratrix servetur, & proportio resistentiae in A ad gravitatem motricem augeatur in ratione, quacunque:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 95:3)
tribus ultimis,) gravitati, & AK resistentiae proportionalis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 29:2)
Projectilia perseverant in motibus suis nisi quatenus a resistentia aeris retardantur & vi gravitatis impelluntur deorsum.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 3:1)
longitudine pro DP vel Dp, fingatur quod resistentia in D sit ad gravitatem in ratione qualibet, & exponatur ratio illa per longitudinem quamvis SM.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 34:5)
exponi possunt vis gravitatis, velocitas corporis & resistentia Medii per lineas AC, AP & AK respective;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 41:3)
7/11Aa ad longitudinem penduli ut corporis oscillantis resistentia in O ad ejusdem gravitatem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 45:12)
Est igitur rectangulum sub ½Ba & Aa aequale rectangulo sub 2/3Ba & OV, adeoque OV aequalis ¾Aa, & propterea corporis oscillantis resistentia in O ad ipsius gravitatem ut ¾Aa ad longitudinem Penduli.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 46:2)
Jungantur DA, DP circulum secantes in E ac T, & exponatur gravitas per DA quadratum, ita ut sit gravitas ad resistentiam in P ut DAq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 18:6)
Igitur area {OR ÷ OQ} IEF - IGH aequalis est areae Z, per quam resistentia exponitur, & propterea est ad aream PINM per quam gravitas exponitur, ut resistentia ad gravitatem. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 34:5)

SEARCH

MENU NAVIGATION