라틴어 문장 검색

Et universaliter, si corporis altitudo maxima CV nominetur T, & radius curvaturae quam Orbis VPK habet in V, id est radius circuli aequaliter curvi, nominetur R, & vis centripeta qua corpus in Trajectoria quacunq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 11:2)
Per superiorem terminorum collationem similes redduntur hi orbes, non universaliter, sed tunc cum ad formam circularem quam maxime appropinquant.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 17:35)
Et universaliter si vis centripeta ad singulas Sphaerae particulas tendens ponatur esse reciproce ut quantitas V, fiat autem DN ut {DEq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 74:2)
Et universaliter, si vires punctorum ad distantias D sint reciproce ut distantiarum dignitas quaelibet D^n, hoc est, si sit FK ut 1 ÷ D^n, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 28:2)
A puncto P ad lineam Horizontalem DC demittatur perpendiculum PC, & secetur DC in A ut sit DA ad AC ut resistentia Medii ex motu in altitudinem sub initio orta, ad vim gravitatis;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 27:2)
Projiciantur corpora duo similia & aequalia eadem cum velocitate, de loco D, secundum angulos diversos CDP, cDp (minuscularum literarum locis subintellectis) & cognoscantur loca F, f, ubi incidunt in horizontale planum DC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 34:3)
Et universaliter, si aequivelocia corpora resistuntur in ratione dignitatis cujuscunq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 19:2)
& a punctis C, G, g, ad planum horizontale AK demittantur perpendicula CB, GD, gd, quorum GD ac gd tangenti occurrant in F & f.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 62:9)
Et hinc colligitur, quod si in Cf capiatur Ck aequalis CF, & ad planum horizontale AK demittatur perpendiculum ki, secans curvam ACK in l;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 65:2)
si designetur Series universaliter his terminis ± Qo - Roo - So^3 &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 71:11)
Sit linea AGK Hyperbola, Asymptoton habens NX plano horizontali AK perpendicularem;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 77:2)
Vnde si NAK lineam horizontalem designet, & manente tum densitate Medij in A, tum velocitate quacum corpus projicitur, mutetur utcunq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 104:9)
Et universaliter, si D ponatur pro distantia, & E pro densitate Fluidi compressi, & vires centrifugae sint reciproce ut distantiae dignitas quaelibet Dn, cujus index est numerus n;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 46:3)
Et universaliter, quantitas materiae pendulae est ut pondus & quadratum temporis directe, & longitudo penduli inverse.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 8:2)
Et universaliter, si resistentia sit in triplicata vel alia quavis ratione velocitatis, differentia erit in eadem ratione arcus totius;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 53:2)

SEARCH

MENU NAVIGATION