-
Igitur si figura rectilinea in aliam transmutanda est, sufficit rectarum intersectiones transferre, & per easdem in figura nova lineas rectas ducere.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 68:1)
-
Sin curvilineam transmutare oportet, transferenda sunt puncta, tangentes & aliae rectae quarum ope Curva linea definitur.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 68:2)
-
Inservit autem hoc Lemma solutioni difficiliorum Problematum, transmutando figuras propositas in simpliciores.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 68:3)
-
Nam rectae quaevis convergentes transmutantur in parallelas, adhibendo pro radio ordinato primo AO lineam quamvis rectam, quae per concursum convergentium transit;
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 68:4)
-
Postquam autem Problema solvitur in figura nova, si per inversas operationes transmutetur haec figura in figuram primam, habebitur Solutio quaesita.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 68:6)
-
Nam quoties duae sectiones conicae obvenerint, quarum intersectione Problema solvi potest, transmutare licet unum earum in circulum.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 69:2)
-
adhibita pro radio ordinato primo, transmutetur figura, per Lemma superius, in figuram novam.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 73:2)
-
Ab intersectione communi duarum quarumlibet tangentium ad intersectionem communem reliquarum duarum agatur recta infinita, & eadem pro radio ordinato primo adhibita, transmutetur figura (per Lem.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 76:1)
-
Pars autem tertia ALB ÷ LD ducta itidem per motum localem normaliter in eandem longitudinem, describet aream Hyperbolicam;
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 82:11)
-
Si ducantur hujus partes tres in longitudinem AB, prima LSI ÷ LD generabit aream Hyperbolicam;
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 88:1)
-
& rectangulum 2ASI subductum de area Hyperbolica AasbB relinquet aream quaesitam ABNA.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 90:6)
-
Talia autem vitra Objectiva vitris Ellipticis & Hyperbolicis praeferenda sunt, non solum quod facilius & accuratius formari possint, sed etiam quod penicillos radiorum extra axem vitri sitos accuratius refringant.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 29:4)
-
velocitas in fine temporis exponetur per ordinatam DG, & spatium totum descriptum per aream Hyperbolicam adjacentem ABGD;
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 5:3)
-
Unde datur spatium in Medio resistente descriptum, capiendo illud ad spatium quod velocitate uniformi AB in Medio non resistente simul describi posset, ut est area Hyperbolica ABGD ad rectangulum AB × AD.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 6:2)
-
Atqui areae Hyperbolicae KNOL ad rectangulum KL × KN ratio ultima, ubi coeunt puncta K & L, est aequalitatis.
- (아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 40:12)