라틴어 문장 검색

arcus capti in dimidiata ratione semidiametrorum denotant aequalia tempora.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 35:10)
adeo in globis omnibus concentricis sunt ut numerus [sqrt]{AR ÷ AC}, id est, in ratione composita ex dimidiata ratione longitudinis fili AR directe & dimidiata ratione semidiametri globi AC inverse. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 36:8)
Nam si Rotae, qua Cyclois intra globum describitur, diameter constituatur aequalis semidiametro globi, Cyclois evadet linea recta per centrum globi transiens, & Oscillatio jam erit descensus & subsequens ascensus in hac recta.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 38:3)
Simili computo, si vires particularum Sphaerae sunt reciproce in duplicata ratione distantiarum, colligetur quod attractio in I sit ad attractionem in P, ut distantia SP ad Sphaerae semidiametrum SA:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 102:4)
Sit autem Sphaeroidis centrum S & semidiameter maxima SC:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 36:6)
Per corpus illud P agantur tum semidiameter SPA, tum rectae duae quaevis DE, FG Sphaeroidi hinc inde occurrentes in D & E, F & G:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 40:6)
Has quantitates ut indeterminatas & instabiles, & quasi motu fluxuve perpetuo crescentes vel decrescentes hic considero, & eorum incrementa vel decrementa momentanea sub nomine momentorum intelligo:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 24:6)
Centro D semidiametro AD describatur tum circuli Quadrans AtE, tum Hyperbola rectangula AVZ axem habens AX, verticem principalem A & Asymptoton DC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 48:2)
gravitati proportionale, sitque DF ipsi DB perpendicularis & aequalis, & per verticem F describatur Hyperbola FTVE cujus semidiametri conjugatae sint DB & DF, quaeq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 21:7)
Designet igitur ABKI corpus Sphaericum centro C semidiametro CA descriptum, & incidant particulae Medii data cum velocitate in corpus illud Sphaericum, secundum rectas ipsi AC parallelas:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 28:7)
In ea capiatur LB semidiametro CB aequalis, & ducatur BD quae Sphaeram tangat in B. In AC & BD demittantur perpendiculares BE, DL, & vis qua particula Medii, secundum rectam FB oblique incidendo, Globum ferit in B, erit ad vim qua particula eadem Cylindrum ONGQ axe ACI circa Globum descriptum perpendiculariter feriret in b, ut LD ad LB vel BE ad BC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 28:9)
Designet ABKI corpus Sphaericum centro C semidiametro CA descriptum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 37:1)
ut ejus motus amissus, quo tempore progrediendo longitudinem semidiametri suae describit, est ad ejus motum totum sub initio, ita motus quem solidum quodvis datum, in Fluido eodem jam facto subtilissimo, describendo diametri suae longitudinem amitteret, est ad ejus motum totum sub initio quamproxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 71:3)
pergent eadem similiter moveri, adeoque quo tempore describunt spatia semidiametris suis aequalia, amittent partes motuum proportionales totis;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 71:8)
hoc est ut spatium Cylindricum per quod solidum movetur, adeoque in duplicata ratione semidiametri solidi quamproxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 75:4)

SEARCH

MENU NAVIGATION