라틴어 문장 검색

Sunt igitur tempora periodica in Ellipsibus eadem ac in circulis, quorum diametri aequantur majoribus axibus Ellipseon.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 33:2)
Super diametro Kk describatur circulus secans rectam OH in H;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 18:6)
super diametro Kk descripto, secetur producta recta VR in H, & umbilicis S, H, axe transverso rectam HV aequante, describatur Trajectoria.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 20:5)
potest QS ipsi AC perpendicularis, ad quam si ab Hyperbolae hujus puncto quovis Z demittatur normalis ZS, haec fuerit ad AZ ut est differentia inter AZ & CZ ad AC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 27:8)
Ad EF ductam & productam demitte normales SG, BH, inq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 37:3)
Et recta quae bisecat parallela illa latera erit una ex diametris Conicae sectionis, & bisecabit etiam RQ.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 4:5)
Produc PO ad K ut sit OK aequalis PO, & erit OK ordinatim applicata ad contrarias partes diametri.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 4:7)
Unde etiam Trajectoriarum centra, diametri & latera recta inveniri possunt, ut in Corollario secundo Lemmatis XIX.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 45:2)
Nam si diametri conjugatae AB, DM tangenti FG occurrant in E & H, seq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 85:1)
Sit circuli hujus centrum O. Ab hoc centro ad Regulam MN, ad quam altera illa crura CN, BN interea concurrebant dum Trajectoria describebatur, demitte normalem OH circulo occurrentem in K & L. Et ubi crura illa altera CK, BK concurrant ad punctum istud K quod Regulae proprius est, crura prima CP, BP parallela erunt axi majori & perpendicularia minori;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 102:5)
Ad AO demittatur normalis FE, & producatur eadem versus F ad usq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 21:10)
ad axem Ellipseos ordinatim applicata PR, ex proportione diametrorum Ellipseos, dabitur circuli circumscripti AQB ordinatim applicata RQ, quae sinus est anguli ACQ existente AC radio.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 26:7)
Super diametro AS (distantia corporis a centro sub initio) describe semicirculum ADS, ut & huic aequalem semicirculum OKH circa centrum S. De corporis loco quovis C erige ordinatim applicatam CD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 27:1)
Patet hoc per Theorema X. Sin ratio illa minor vel major est quam 2 ad 1, priore casu Circulus, posteriore Hyperbola rectangula super diametro SA describi debet.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 31:4)
longitudo itineris curvilinei, quod punctum quodvis in rotae perimetro datum, ex quo globum tetigit, confecit, erit ad duplicatum sinum versum arcus dimidii qui globum ex eo tempore inter eundem tetigit, ut summa diametrorum globi & rotae ad semidiametrum globi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 11:2)

SEARCH

MENU NAVIGATION