라틴어 문장 검색

expurgata jam et abrasa et aequata mentis area, sequitur ut mens sistatur in positione bona, et tanquam aspectu benevolo, ad ea quae proponemus.
(FRANCIS BACON, NOVUM ORGANUM, Liber Primus 279:4)
et in fluxibus eadem superficies sit magis plana et aequa, redeuntibus scilicet aquis ad priorem suam positionem;
(FRANCIS BACON, NOVUM ORGANUM, Liber Secundus 349:4)
Altera quae consuta est et sarcita ex positionibus ex diametro inter se contrariis in capitibus nimrum fundamentalibus.
(FRANCIS BACON, SERMONES FIDELES SIVE INTERIORA RERUM, III. DE UNITATE ECCLESIAE 2:30)
Haud facile quis dixerit utrum Apelles aut Albertus Durerus nugator maior fuerit, quorum alter hominem secundum proportiones geometricas effingere voluit, alter ex compluribus faciebus optimas quasque partes desumendo unam satagebat depingere excellentem.
(FRANCIS BACON, SERMONES FIDELES SIVE INTERIORA RERUM, XLI. [ = English XLIII] DE PULCHRITUDINE 2:5)
Donec igitur aut acriores oculi, quod vix erediderim, aut instructior ars, quod fieri posse nemo negaverit, in communem usum protulerin, quae Blume investigavit, nihil aliud restat, nisi ut ea, quae fertur Boetii geometria, edatur, quam artem geometricam auctorem nominasse testantur loci, quos in pag. 434 sub voce ars attuli.
(보이티우스, De Arithmetica, Prefationes, Praefatio Editoris 4:15)
Rursus cum aliquam geometricam formam dicero, est illi simul numerorum nomen inplicitum;
(보이티우스, De Arithmetica, Liber primus, Proemium, in quo divisio mathematicae. 1:30)
cum numeros dixero, nondum ullam formam geometricam nominavi.
(보이티우스, De Arithmetica, Liber primus, Proemium, in quo divisio mathematicae. 1:31)
In astronomia enim circuli, sphera, centrum, paralellique circuli mediusque axis est, quae omnia geometricae disciplinae curae sunt.
(보이티우스, De Arithmetica, Liber primus, Proemium, in quo divisio mathematicae. 1:40)
Sit enim prima positio sesquitertii
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 33:2)
Nunc autem nobis de his numeris sermo futurus est, qui circa figuras geometricas et earum spatia demensionesque versantur, id est de linearibus numeris et de triangularibus vel quadratis ceterisque, quos sola pandit plana demensio, nec non de inaequali laterum compositione coniunctis;
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:4)
de solidis etiam, id est cybis et sphericis vel pyramidis, laterculis etiam vel tignulis et cuneis, quae omnia quidem geometricae propriae considerationis sunt, sed sicut ipsa geometriae scientia ab arithmetica velut quadam radice ac matre producta est, ita etiam eius figurarum semina in primis numeris invenimus, planum siquidem fecimus, quod omnes disciplinas haec interempta consumeret, quas minime constituta firmaret.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:5)
Est igitur primus triangulus numerus, qui in solis tribus unitatibus dissipatur secundum superficiei positionem, triangula scilicet descriptione, et post hunc quicunque aequalitatem laterum in trina laterum spatia segregant.
(보이티우스, De Arithmetica, Liber secundus, Dispositio triangulorum numerorum 2:1)
nunc res admonet quaedam de proportionibus disputantes, quae nobis vel ad musicas speculationes vel ad astronomicas subtilitates vel ad geometricae considerationis vim vel etiam ad veterum lectionum intellegentiam prodesse possint, arithmeticam introductionem commodissime terminare.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:2)
arithmetica, geometrica, armonica.
(보이티우스, De Arithmetica, Liber secundus, Quae apud antiquos proportionalitas fuerit; quas posteriores addiderint 1:2)
apparuit, arithmeticam vim geometrica atque musica esse antiquiorem et quod inlata non has simul inferret, sublata vero perimeret.
(보이티우스, De Arithmetica, Liber secundus, Quod primum de ea, quae vocatur arithmetica proportionalitas, dicendum sit 2:2)

SEARCH

MENU NAVIGATION