라틴어 문장 검색

et ut angulorum totius descriptionis ad angulares tetragonos positorum unius anguli sit prima unitas, alterius vero, qui contra est, tertia, bini vero altrinsecus anguli secundas habeant unitates;
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:13)
et duo angularium tetragonorum anguli aequum faciunt, quod sub ipsis continetur, illi, quod fit ab uno illorum, qui est altrinsecus, angulorum.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:14)
Sit enim prima positio sesquitertii
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 33:2)
Et omnis triangularis figura vel tetragoni vel pentagoni vel exagoni vel cuiuslibet, qui pluribus angulis continetur, si a medietate per singulos angulos lineae producantur, tot eum dividunt trianguli, quot ipsam figuram angulos habere contigerit.
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:4)
Est igitur primus triangulus numerus, qui in solis tribus unitatibus dissipatur secundum superficiei positionem, triangula scilicet descriptione, et post hunc quicunque aequalitatem laterum in trina laterum spatia segregant.
(보이티우스, De Arithmetica, Liber secundus, Dispositio triangulorum numerorum 2:1)
Quadrati vero numeri, id est tetragoni, procreatio fiebat ex numeris, qui uno intermisso copulabantur, cum se binario superarent.
(보이티우스, De Arithmetica, Liber secundus, De exagonis eorumque generationibus. 1:3)
in tetragono vero, qui secundus est, duobus sese iuncti numeri vincunt, et in pentagono tribus et in exagono iiij et in eptagono quinque, huiusque rei nullus est modus.
(보이티우스, De Arithmetica, Liber secundus, De eptagonis eorumque generationibus et communis omnium figurarum inveniendae generationis regula descriptionesque figurarum 2:6)
Omnes enim tetragoni, qui sub triangulis sunt naturali ordinatione dispositi, ex superioribus triangulis procreantur illorumque collectione quadrati figura componitur.
(보이티우스, De Arithmetica, Liber secundus, Qui figurati numeri ex quibus figuratis numeris fiant, inque eo quod triangulus numerus omnium reliquorum principium sit. 1:2)
Quattuor enim tetragonus fit ex uno et tribus, id est ex duobus superioribus triangulis;
(보이티우스, De Arithmetica, Liber secundus, Qui figurati numeri ex quibus figuratis numeris fiant, inque eo quod triangulus numerus omnium reliquorum principium sit. 1:3)
Pentagonorum vero summae conficiuntur ex uno super se tetragono et altrinsecus triangulo constituto.
(보이티우스, De Arithmetica, Liber secundus, Qui figurati numeri ex quibus figuratis numeris fiant, inque eo quod triangulus numerus omnium reliquorum principium sit. 1:7)
Nam quinarius pentagonus ex quaternario super se posito tetragono et ex uno, qui in triangulorum ordine ponitur, adgregatur.
(보이티우스, De Arithmetica, Liber secundus, Qui figurati numeri ex quibus figuratis numeris fiant, inque eo quod triangulus numerus omnium reliquorum principium sit. 1:8)
Hi vero omnes, si ad latitudinem fuerint comparati, id est trianguli tetragonis vel tetragoni pentagonis vel pentagoni exagonis vel hi rursus eptagonis, sine aliqua dubitatione triangulis sese superabunt.
(보이티우스, De Arithmetica, Liber secundus, Pertinens ad figuratorum numerorum descriptionem speculatio. 1:1)
Nam si ternarium triangulum quaternario, vel quaternarium tetragonum quinario, vel quinarium pentagonum senario exagono, vel senarium septenario eptagono compares, primo se triangulo, id est sola transeunt unitate.
(보이티우스, De Arithmetica, Liber secundus, Pertinens ad figuratorum numerorum descriptionem speculatio. 1:2)
Est autem pyramis alias a triangula basi in altitudinem sese erigens, alias a tetragona, alias a pentagona et secundum sequentium multitudines angulorum ad unum cacuminis verticem sublevata.
(보이티우스, De Arithmetica, Liber secundus, De pyramide, quod ea sit solidarum figurarum principium sicut triangulus planarum 2:3)
Tetragonum, pentagonum, exagonumque cum notatis
(보이티우스, De Arithmetica, Liber secundus, De his pyramidis, quae a quadratis vel a ceteris multiangulis proficiscuntur figuris 1:1)

SEARCH

MENU NAVIGATION