라틴어 문장 검색

Quare si punctum uno quidem intervallo a linea supergreditur, idem a superficie vincitur duobus, tribus vero intervalli demensionibus a soliditate relinquitur, constat punctum ipsum sine ulla corporis magnitudine vel intervalli demensione, cum et longitudinis et latitudinis et profunditatis expers sit, omnium intervallorum esse principium et natura insecabile, quod Graeci atomon vocant, id est ita deminutum atque parvissimum, ut eius pars inveniri non possit.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:41)
Sicut enim longitudini numerorum aliud intervallum, id est superficiem, ut latitudo ostenderetur, adiecimus, ita nunc latitudini si quis addat eam, quae alias altitudo alias crassitudo alias profunditas appellatur, solidum numeri corpus explebit.
(보이티우스, De Arithmetica, Liber secundus, De numeris solidis. 1:2)
Videtur autem, quemadmodum in planis figuris triangulus numerus primus est, sic in solidis, qui vocatur pyramis, profunditatis esse principium.
(보이티우스, De Arithmetica, Liber secundus, De pyramide, quod ea sit solidarum figurarum principium sicut triangulus planarum 2:1)
secundus vero triangulus est ternarius, quem si cum primo coniunxero, id est cum unitate, quaternaria mihi profunditas pyramidis excrescit.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 1:10)
Dispositis enim in ordinem tetragonis i iiij viiij xvj xxv, quoniam hi solam longitudinem latitudinemque sortiti sunt et altitudine carent, si per latera solam unam multiplicationem recipiant, aequalem provehunt profunditatem.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:2)
Omnis autem cybus, qui ex tetragonorum superficie in profunditatem corporis crevit, per tetragoni scilicet latus multiplicatus, habebit quidem superficies vj, quarum singula planitudo tetragono illi priori aequalis est, latera vero xij, quorum unumquodque singulis his, quae superioris fuere tetragoni, aequum est, et, ut superius demonstravimus, tot unitatum est;
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:17)
huic oppositum contrariumque esse oportebit qui neque longitudinem latitudini neque haec duo profunditati gerat aequalia, sed cunctis inaequalibus, quamvis solida sit figura, ab aequalitate cybi longissime distare videatur.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 7:2)
Etenim quos ad quamlibet illam rem constringendam cuneos formant neque latitudinis neque longitudinis neque altitudinis habita ratione, quantum commodum fuerit, tantum vel altitudini minuitur, vel crassitudini profunditatis augetur.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 7:8)
Est ergo princeps inparis ordinis unitas, quae ipsa quidem effectrix et quodammodo forma quaedam est inparitatis, quae in tantum eiusdem nec mutabilis substantiae est, ut, cum vel se ipsa multiplicaverit vel in planitudine vel in profunditate, vel si alium quemlibet numerum per se ipsa multiplicet, a prioris quantitatis forma non discrepet.
(보이티우스, De Arithmetica, Liber secundus, Quod ex inparibus quadrati, ex paribus parte altera longiores fiant 4:1)
Namque si se ipsa multiplicet vel per latitudinem vel etiam per profunditatem vel si quem numerum in suam conglobet quantitatem, continuo alter exoritur.
(보이티우스, De Arithmetica, Liber secundus, Quod ex inparibus quadrati, ex paribus parte altera longiores fiant 4:4)
Etenim secunda multiplicatio effectrix semper est profunditatis.
(보이티우스, De Arithmetica, Liber secundus, De circularibus vel sphericis numeris 1:13)
Haec autem huiusmodi invenietur, si duobus terminis constitutis, qui ipsi tribus creverint intervallis, longitudine latitudine et profunditate, duo huismodi termini medii fuerint constituti et ipsi tribus intervallis notati, qui vel ab aequalibus per aequales aequaliter sint producti vel ab inaequalibus ad inaequalia inaequaliter, vel ab inaequalibus ad aequalia aequaliter, vel quolibet alio modo, atque ita, cum armonicam proportionem custodiant alio tamen modo comparati faciant arithmeticam medietatem hisque geometrica medietas, quae inter utrasque versatur, deesse non possit.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:3)
Nam ut pauca, quae ratio ualet humana, de diuina profunditate perstringam, de hoc quem tu iustissimum et aequi seruantissimum putas omnia scienti prouidentiae diuersum uidetur.
(보이티우스, De philosophiae consolatione, Liber Quartus, XI 6:1)
His collocatis et coagmentatis alius insuper ordo additur, ut idem illud intervallum servetur neque inter se contingant trabes, sed paribus intermissae spatiis singulae singulis saxis interiectis arte contineantur.
(카이사르, 갈리아 전기, 7권, 23장3)
umbilico maxime similis est habitus zmaragdo et gemmis coagmentatus.
(쿠르티우스 루푸스, 퀸투스, 알렉산드로스 대왕 전기, 4권, 7장 25:2)

SEARCH

MENU NAVIGATION