라틴어 문장 검색

13. Circa idem tempus rex quater mille libras a civitate Londini mutuo sumpsit.
(FRANCIS BACON, HISTORIA REGNI HENRICI SEPTIMI REGIS ANGLIAE, CAPITULUM QUARTUM 13:1)
Iiij enim tricies et bis, vel quater xxxii ducti cxxviij inmutabili necessitate conplebunt, atque hoc usque ad extremus terminus cxxviij est;
(보이티우스, De Arithmetica, Liber primus, De numero pariter pari eiusque proprietatibus. 16:7)
Nam quater xvi lxiiij sunt et sedecies iiij idem conplent.
(보이티우스, De Arithmetica, Liber primus, De numero pariter pari eiusque proprietatibus. 17:3)
Rusus bis xxxii facti a lxiiij non discedunt, et tricies bis ii eosdem cumulant, et semel lxiiij vel untias sexagies quater multiplicata eundem numerum sine ulla variatate restituent.
(보이티우스, De Arithmetica, Liber primus, De numero pariter pari eiusque proprietatibus. 17:4)
Si iij quater multiplices xij fient, vel si v quattuor mltiplicent xx numerus excrescet, vel si item vij multiplicent iiij, xxviij succrescet, atque hoc usque in finem.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 5:2)
Si igitur bis solum maiorem numerum minor numerus metiatur, subduplus vocabitur, si vero ter, subtriplus, si quater, subquadruplus et fit per haec in infinitum progressio, additaque eos semper sub praepositione nominabis, ut unus duorum subduplus, trium subtriplus, iiij subquadruplus appelletur et consequenter.
(보이티우스, De Arithmetica, Liber primus, De multiplici eiusque speciebus earumque generationibus. 1:10)
Sin vero a qualibet basi profecta usque ad unitatem altitudo illa non venerit, curta vocabitur, recteque huiusmodi pyramis tali nuncupatione signatur, si usque ad extremitatem punctumque non venerit.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:3)
Pyramidis equidem figura est, sed quoniam usque ad cacumen verticis non excrevit, curta vocabitur et habebit summitatem non iam punctum, quod unitas est, sed superficiem, quod est quilibet numerus secundum basis ipsius angulos porrectus atque ultimus adgregatus.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:5)
Ergo in curta pyramide tot erit angulorum superficies, quot fuerit basis.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:7)
Si vero illa pyramis non solum ad unitatem extremitatemque non pervenit, sed nec ad primum quoque opere et actu multiangulum eius generis, cuius fuerit basis, bis curta vocabitur;
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:8)
Et quotcunque tetragoni defuerint, totiens eam curtam esse dicemus;
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:10)
ut si unitas defuerit, primus quadratus, curtam, quam Graeci κολουρον vocant;
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:11)
si vero duobus tetragonis deficitur, id est unitate et eo, qui sequitur, vocatur bis curta, quod Graeci δικολουρον appellant.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:12)
Quod si tribus tetragonis, ter curta dicetur, quam Graeci τρικολουρον nominant.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:13)
Et quotcunque tetragoni fuerint minus, totiens illam pyramidem curtam esse proponimus.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:14)

SEARCH

MENU NAVIGATION