라틴어 문장 검색

Nimirum si motus totus angularis, quo corpus redit ad Apsidem eandem, sit ad motum angularem revolutionis unius, seu graduum 360, ut numerus aliquis m ad numerum alium n, & altitudo nominetur A:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 22:4)
Ut si corpus revolutionibus 8 vel 4 vel 2 vel 1½ de Apside summa ad Apsidem summam alterno descensu & ascensu redierit, hoc est, si fuerit m ad n ut 8 vel 4 vel 2 vel 1½ ad 1, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 22:22)
Si corpus singulis revolutionibus redierit ad Apsidem eandem immotam, erit m ad n ut 1 ad 1, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 22:24)
Si corpus partibus revolutionis unius vel tribus quartis, vel duabus tertiis, vel una tertia, vel una quarta, ad Apsidem eandem redierit, erit m ad n ut 3/4 vel 2/3 vel 1/3 vel 1/4 ad 1, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 22:26)
si Corpus pergendo ab Apside summa ad Apsidem summam confecerit revolutionem integram, & praeterea gradus tres, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 22:29)
Apsis illa singulis corporis revolutionibus confecerit in Consequentia gradus tres, erit m ad n ut 363gr.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 22:30)
angulus revolutionis inter Apsides aequalis angulo graduum 180[sqrt]{{1 - c} ÷ {1 - 4c}}.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 23:8)
Apsis summa singulis revolutionibus progrediendo conficiet 1gr. 31m. 14s.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 23:13)
revolventia describent Ellipses, & revolutiones temporibus aequalibus peragent;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 6:3)
Concipe lineas curvas in plano describi, dein circa axes quosvis datos per centrum virium transeuntes revolvi, & ea revolutione superficies curvas describere;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 9:2)
adeo in lineis curvis quarum revolutione curvae illae superficies genitae sunt.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 9:6)
Proinde cum haec sit ut via describenda TR, accelerationes corporis vel retardationes in Oscillationum duarum (majoris & minoris) partibus proportionalibus describendis, erunt semper ut partes illae, & propterea facient ut partes illae simul describantur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 45:3)
vis posterior efficeret ut corpus p gyraretur in curva pqv, quae similis esset curvae PQV, in qua vis prior efficit ut corpus P gyretur, & revolutiones iisdem temporibus complerentur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 9:11)
Ex praemissis consequitur etiam quod Ellipseos a corpore P descriptae axis seu Apsidum linea, quoad motum angularem progreditur & regreditur per vices, sed magis tamen progreditur, & in singulis corporis revolutionibus per excessum progressionis fertur in consequentia.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 59:2)
Unde cum vis KL in Syzygiis sit quasi duplo major quam vis LM in quadraturis, excessus in tota revolutione erit penes vim KL, transferetq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 59:12)

SEARCH

MENU NAVIGATION