라틴어 문장 검색

Horum ergo singuli habent quidem a se denominatas partes proprias, scilicet unitates, ut viiij nonam,id est unum, xv quintam decimam eandem rursus unitatem et in ceteris, quos supra descripsimus, idem convenit.
(보이티우스, De Arithmetica, Liber primus, De secundo et composito 1:4)
Nam quae in viiij tertia est, in xxv non est, et quae in xxv quinta est, in novenario non est. Ergo hi per naturam utrique secundi et compositi sunt, comparati vero ad se invicem primi incompositique redduntur, quod utrosque nulla alia mensura metitur, nisi unitas, quae ab utrisque denominata est;
(보이티우스, De Arithmetica, Liber primus, De eo, qui per se secundus et compositus est, ad alium primus et incompositus 1:4)
Bis enim iij vj faciunt, qui habet unam quidem a se denominatam partem, id est sextam, iij vero medietatem secundum dualitatem, at vero ij secundum coacervationem, id est secundum ternarium, quoniam coacervati iij multiplicati sunt.
(보이티우스, De Arithmetica, Liber primus, De generatione numeri perfecti. 4:4)
Septies enim iiij xxviij sunt, qui est suis partibus par, habens j a se denominatum, id est vicesimum octavum, medietatem vero secundum binarium xiiij, secundum quaternarium vij, septimum vero secundum septenarium iiij, secundum omnium collectionem quartum decimum ij, qui vocabulo medietatis obponitur.
(보이티우스, De Arithmetica, Liber primus, De generatione numeri perfecti. 4:9)
Sed hic primus et incompositus non est, habet enim generis alterius partem super illam, quae est a se ipsa denominata, quintam decimam scilicet unitatem.
(보이티우스, De Arithmetica, Liber primus, De generatione numeri perfecti. 4:14)
Namque maius minore maius est et minus maiore minus est, et utraque non eisdem vocabulis, quemadmodum secundum aequalitatem dictum est, sed diversis distantibusque signata sunt, ad modum discentis scilicet vel docentis vel caedentis vel vapulantis vel quaecunque ad aliquid relata aliter denominatis contrariis comparantur.
(보이티우스, De Arithmetica, Liber primus, De relata ad aliquid quantitate. 2:2)
Hoc autem in hac est dispositione divinum, quod omnes angulares numeri tetragoni sunt.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:1)
et ut angulorum totius descriptionis ad angulares tetragonos positorum unius anguli sit prima unitas, alterius vero, qui contra est, tertia, bini vero altrinsecus anguli secundas habeant unitates;
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:13)
et duo angularium tetragonorum anguli aequum faciunt, quod sub ipsis continetur, illi, quod fit ab uno illorum, qui est altrinsecus, angulorum.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:14)
Et omnis triangularis figura vel tetragoni vel pentagoni vel exagoni vel cuiuslibet, qui pluribus angulis continetur, si a medietate per singulos angulos lineae producantur, tot eum dividunt trianguli, quot ipsam figuram angulos habere contigerit.
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:4)
Quadrati vero numeri, id est tetragoni, procreatio fiebat ex numeris, qui uno intermisso copulabantur, cum se binario superarent.
(보이티우스, De Arithmetica, Liber secundus, De exagonis eorumque generationibus. 1:3)
in tetragono vero, qui secundus est, duobus sese iuncti numeri vincunt, et in pentagono tribus et in exagono iiij et in eptagono quinque, huiusque rei nullus est modus.
(보이티우스, De Arithmetica, Liber secundus, De eptagonis eorumque generationibus et communis omnium figurarum inveniendae generationis regula descriptionesque figurarum 2:6)
Omnes enim tetragoni, qui sub triangulis sunt naturali ordinatione dispositi, ex superioribus triangulis procreantur illorumque collectione quadrati figura componitur.
(보이티우스, De Arithmetica, Liber secundus, Qui figurati numeri ex quibus figuratis numeris fiant, inque eo quod triangulus numerus omnium reliquorum principium sit. 1:2)
Quattuor enim tetragonus fit ex uno et tribus, id est ex duobus superioribus triangulis;
(보이티우스, De Arithmetica, Liber secundus, Qui figurati numeri ex quibus figuratis numeris fiant, inque eo quod triangulus numerus omnium reliquorum principium sit. 1:3)
Pentagonorum vero summae conficiuntur ex uno super se tetragono et altrinsecus triangulo constituto.
(보이티우스, De Arithmetica, Liber secundus, Qui figurati numeri ex quibus figuratis numeris fiant, inque eo quod triangulus numerus omnium reliquorum principium sit. 1:7)

SEARCH

MENU NAVIGATION