라틴어 문장 검색

Columnas etiam et pyramides altas ex opere lignario in aliquibus locis sparsas, sepibus vestitas, recipio.
(FRANCIS BACON, SERMONES FIDELES SIVE INTERIORA RERUM, XLIV. [ = English XLVI] DE HORTIS 5:5)
Et haut scio an in ipsius Boetii operibus corrigendis constantior esse studuerim Boetio ipso, cum variationem rerum illum amasse non solum easdem sententias eloquendi maxima varietas testetur, sed etiam quod promiscue scripsisse eum maxime et verisimile triangulus et triangulum, pyramidam et pyramidem, atomon latinis, κολουρον graecis litteris, similia.
(보이티우스, De Arithmetica, Prefationes, Praefatio Editoris 5:9)
Quincupli vero propositio secundum triplicis similitudinem alternatim paribus atque inparibus positis ordinatur.
(보이티우스, De Arithmetica, Liber primus, De multiplici eiusque speciebus earumque generationibus. 2:22)
Si vero tertius angulus aspiciatur, qui ab viiij inchoans longitudinem latitudinemque tricenis altrinsecus numeris extendit, et hic cum prima latitudine et longitudine comparetur, triplex species multiplicitatis occurrit ita, ut ista comparatio per x litteram fiat, hique se numeri superabunt secundum paritatis factam naturaliter connexionem.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 1:2)
Ea vero species huius numeri, quae est triplex sesqualtera, hoc modo procreatur, si disponantur a binario numero omnes in ordinem pares et ad eos a septenario numero inchoantes septenario sese supergredientes solito ad alterutrum comparationis modo aptentur.
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 14:1)
Quod autem dico sibimet similium, tale est, ut dupli semper multiplicitas, ut superius destinatum est, sesqualteros creet et dux sit triplex sesquitertiorum, quadruplus sesquiquartis.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 2:2)
Nam quoniam primus triplex est ternarius numerus, habet unum sesquitertium, id est iiij, cuius quaternarii tertia pars non potest inveniri.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 9:3)
Secundus vero, qui est viiij, habet ad se duodenarium numerum sesquitertium, duodenarius autem, quoniam habet tertiam partem, in sesquitertia proportione comparatur ad eum numerus xvj, qui tertiae partis sectione solutus est xxvij autem, quoniam tertius est triplex, habet ad se sesquitertium xxxvj et hic rursus ad xlviij eadem proportione comparatur.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 9:5)
Et triplicis quidem haec est descriptio.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 9:9)
Ex duplici igitur et sesqualtero triplex ratio proportionis exoritur, et in eas rursus resolutione facta revocatur.
(보이티우스, De Arithmetica, Liber secundus, Quod multiplex intervallum ex quibus superparticularibus medietate posita intervallis fiat eiusque inveniendi regula. 5:1)
de solidis etiam, id est cybis et sphericis vel pyramidis, laterculis etiam vel tignulis et cuneis, quae omnia quidem geometricae propriae considerationis sunt, sed sicut ipsa geometriae scientia ab arithmetica velut quadam radice ac matre producta est, ita etiam eius figurarum semina in primis numeris invenimus, planum siquidem fecimus, quod omnes disciplinas haec interempta consumeret, quas minime constituta firmaret.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:5)
Idem quoque et in superficiei rationem cadit, quae et ipsa solidi corporis et triplicis intervalli naturale sortitur initium, ipsa vero nec trina intervalli demensione distenditur, nec ulla crassitudine solidatur.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:43)
Videtur autem, quemadmodum in planis figuris triangulus numerus primus est, sic in solidis, qui vocatur pyramis, profunditatis esse principium.
(보이티우스, De Arithmetica, Liber secundus, De pyramide, quod ea sit solidarum figurarum principium sicut triangulus planarum 2:1)
Est autem pyramis alias a triangula basi in altitudinem sese erigens, alias a tetragona, alias a pentagona et secundum sequentium multitudines angulorum ad unum cacuminis verticem sublevata.
(보이티우스, De Arithmetica, Liber secundus, De pyramide, quod ea sit solidarum figurarum principium sicut triangulus planarum 2:3)
Posito enim triangulo atque descripto si per tres angulos singulae lineae recte stantes ponantur, haeque tres inclinentur, ut ad unum medium punctum vertices iungant, fit pyramis, quae, cum a triangula basi profecta sit, tribus triangulis per latera concluditur hoc modo:
(보이티우스, De Arithmetica, Liber secundus, De pyramide, quod ea sit solidarum figurarum principium sicut triangulus planarum 2:4)

SEARCH

MENU NAVIGATION