라틴어 문장 검색

Igitur si velocitas exponatur per longitudinem GD, spatium descriptum erit ut area Hyperbolica DESR.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 12:2)
D data cum velocitate vel sursum vel deorsum projiciatur, & detur lex vis centripetae, invenietur velocitas ejus in alio quovis loco e, erigendo ordinatam eg, & capiendo velocitatem illam ad velocitatem in loco D ut est latus quadratum rectanguli PQRD area curvilinea DFge vel aucti, si locus e est loco D inferior, vel diminuti, si is superior est, ad latus quadratum rectanguli solius PQRD, id est ut [sqrt]{PQRD + vel - DFge} ad [sqrt]PQRD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 45:3)
Igitur velocitas AP est ad velocitatem quam corpus tempore EDT, in spatio non resistente, ascendendo amittere vel descendendo acquirere posset, ut area trianguli DAP ad aream sectoris centro D, radio DA, angulo ADT descripti;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 26:2)
Quo demonstrato, consequens est etiam ut areae his lineis descriptae sint in progressione consimili cum spatiis quae velocitatibus describuntur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 4:14)
Hinc si AB aequetur quartae parti ipsius AC, spatium ABRP, quod corpus tempore quovis ATD cadendo describit, erit ad spatium quod corpus semisse velocitatis maximae AC, eodem tempore uniformiter progrediendo describere potest, ut area ABRP, qua spatium cadendo descriptum exponitur, ad aream ATD qua tempus exponitur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 52:2)
Velocitas autem Lunae in Syzygiis A & B est ad ipsius velocitatem in Quadraturis C & D ut CS, ad AS & momentum areae quam Luna radio ad Terram ducto describit in Syzygiis ad momentum ejusdem areae in Quadraturis conjunctim;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 40:16)
Unde datur spatium in Medio resistente descriptum, capiendo illud ad spatium quod velocitate uniformi AB in Medio non resistente simul describi posset, ut est area Hyperbolica ABGD ad rectangulum AB × AD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 6:2)
velocitas in fine temporis exponetur per ordinatam DG, & spatium totum descriptum per aream Hyperbolicam adjacentem ABGD;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 5:3)
& componendo, ita Ca ad Cd. Ergo areae ABba, DEed, hoc est spatia descripta aequantur inter se, & velocitates primae AB, DE sunt ultimis ab, de, & propterea (dividendo) partibus etiam suis amissis AB - ab, DE - de proportionales. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 13:2)
dico quod si Circuli & Hyperbolae diametris parallelae rectae per conjugatarum diametrorum terminos ducantur, & velocitates sint ut segmenta quaedam parallelarum a dato puncto ducta, Tempora erunt ut arearum Sectores, rectis a centro ad segmentorum terminos ductis abscissi:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 17:2)
Et velocitas, quam vis maxima tempore quovis CP generare posset, erit ad velocitatem quam vis omnis minor EL eodem tempore generat ut rectangulum ½SP × CP ad aream KCGF:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 29:21)
& compositè, area tota GCKF ut summa omnium virium EL tempore toto CP impressarum in Lunam, atque adeò etiam ut velocitas hac summâ genita, id est, ut acceleratio descriptionis areae CSP, seu incrementum momenti.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 29:16)
Coincidat autem EG ipso motus initio cum perpendiculari AB, & erit corporis velocitas in loco quovis E ut areae curvilineae ABGE latus quadratum. Q. E. I. In EG capiatur EM lateri quadrato areae ABGE reciproce proportionalis, & sit ALM linea curva quam punctum M perpetuo tangit, & erit tempus quo corpus cadendo describit lineam AE ut area curvilinea ALME.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 41:4)
Nam si area illa per motum puncti D augeatur uniformiter ad modum temporis, decrescet recta DC in ratione Geometrica ad modum velocitatis, & partes rectae AC aequalibus temporibus descriptae decrescent in eadem ratione.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 13:5)
Designet igitur F aream foraminis, A altitudinem aquae foramini perpendiculariter incumbentis, P pondus ejus, AF quantitatem ejus, S spatium quod dato quovis tempore T in vacuo libere cadendo describeret, & V velocitatem quam in fine temporis illius cadendo acquisierit:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 48:1)

SEARCH

MENU NAVIGATION