라틴어 문장 검색

Circum ipsos vero qui sunt, id est circum angulares, longilateri numeri sunt.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:4)
et ut angulorum totius descriptionis ad angulares tetragonos positorum unius anguli sit prima unitas, alterius vero, qui contra est, tertia, bini vero altrinsecus anguli secundas habeant unitates;
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:13)
et duo angularium tetragonorum anguli aequum faciunt, quod sub ipsis continetur, illi, quod fit ab uno illorum, qui est altrinsecus, angulorum.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:14)
Angulares autem omnium multiplices evenire necesse est. Erunt autem duplicium quidem triplices, triplicium quadruplices, quadruplorum vero quincupli et secundum eandem ordinis incommutabilem rationem sibimet cuncta consentient.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 23:6)
Est igitur unitas vicem obtinens puncti, intervalli longitudinisque principium;
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:11)
ipsa vero nec intervalli nec longitudinis capax, quemadmodum punctum principium quidem lineae est atque intervalli, ipsum vero nec intervallum nec linea.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:12)
Nam si quotlibet fuerint termini pares, tantum quidem est a primo ad secundum, quantum a secundo ad tertium, sed inter primum et secundum vel secundum et tertium nulla est intervalli longitudo vel spatium.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:16)
longitudo, latitudo, altitudo, id est linea, superficies atque soliditas.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:26)
Est enim in longitudine ante et retro, in latitudine sinistra et dextera, in altitudine sursum ac deorsum.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:31)
Necesse est autem, ut quicquid fuerit solidum corpus, hoc habeat longitudinem latitudinemque et altitudinem, et quicquid haec tria in se continet, illud suo nomine solidum vocetur.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:32)
Omnis enim superficies sola longitudine et latitudine continetur.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:35)
Omne enim quod superficies est, longitudinem et latitudinem retinet, et quod haec retinet, illud est superficies.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:37)
Haec autem superficies uno tantum intervallo solidi corporis demensione superatur, quae uno rursus intervallo lineam vincit, quae longitudinis naturam retinens latitudinis expers est;
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:38)
Punctum igitur alio rursus intervallo a linea vincitur, ipsa scilicet, quae reliqua est, longitudine.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:40)
Quare si punctum uno quidem intervallo a linea supergreditur, idem a superficie vincitur duobus, tribus vero intervalli demensionibus a soliditate relinquitur, constat punctum ipsum sine ulla corporis magnitudine vel intervalli demensione, cum et longitudinis et latitudinis et profunditatis expers sit, omnium intervallorum esse principium et natura insecabile, quod Graeci atomon vocant, id est ita deminutum atque parvissimum, ut eius pars inveniri non possit.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:41)

SEARCH

MENU NAVIGATION