라틴어 문장 검색

Namque quemadmodum unusquisque eorum terminus ad se ipsum est, quoniam sibi aequalis est, ita sunt ad se invicem differentiae, quoniam sibi sunt aequales;
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 1:8)
et tanto minor est numerus, qui fit ex multiplicatis extremitatibus, ab eo, qui fit ex multiplicata medietate, quantum eorum differentiae multiplicatae restituunt;
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 1:12)
Differentiae quoque eorum in eadem sunt proportione qua termini.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 2:4)
Qua enim maximus ad parvissimum terminus proportione coniungitur, eadem proportione differentiae ad se invicem comparantur.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 3:3)
VIIII vero si inter utrosque terminos ponam, ut sint v viiij xlv, fit armonica medietas, ut qua summa maximus numerus parvissimum praecedit, eadem maior differentia minorem differentiam vincat.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 4:5)
X enim et xl faciunt l. Differentia autem inter x et xl. xxx sunt, quem si multiplices in denarium, id est in minorem, decies xxx oportet ccc efficies.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 5:18)
Liquet autem oppositam et quodammodo contrariam esse hanc medietatem armonicae medietati idcirco, quod in illa quemadmodum est maximus terminus ad parvissimum, sic terminorum maiorum differentia ad differentiam minorum, hic autem e contrario.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 1:9)
Est autem quinta medietas, quotiens in tribus terminis quemadmodum est medius terminus ad minorem terminum, ita eorum differentia ad differentiam medii atque maioris.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 2:2)
Contrarium autem geometricae medietati in hac proportione est, quod in illa quemadmodum major terminus ad minorem est, sic maiorum differentia ad differentiam minorum;
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 2:4)
Sexta vero medietas est, quando tribus terminis constitutis quemadmodum est maior terminus ad medium, sic minorum terminorum differentia ad differentiam maximorum.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 3:1)
In dispositione enim, quae est j iiij vj, maximus terminus ad medium sesqualter est, differentia vero minorum, id est unius et iiij ternarius est, maiorum vero, id est quaternarii et senarii, binarius.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 3:2)
Eodem autem modo haec quoque medietas geometricae contraria est, quemadmodum et quinta, propter proportionem differentiarum a minoribus ad maiores terminos conversam.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 3:4)
Septenarii vero et quaternarii ternarius differentia est, quem si ad superiorem binarium comparemus, sesqualtera proportione coniungitur.
(보이티우스, De Arithmetica, Liber secundus, De quattuor medietatibus, quas posteri ad implendum denarium limitem adiecerunt 1:11)
Rursus si maximus iiij terminorum numerus ad eum, qui sibi propinquus erit, talem habeat differentiam, qualem idem ipse maximo propinquus ad parvissimum, huiusmodi proportio in arithmetica consideratione proponitur, et extremorum coniunctio duplex erit propria medietate.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:5)
In utrisque enim ternarius differentia est et iunctae extremitates medietate duplae sunt.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:13)

SEARCH

MENU NAVIGATION