라틴어 문장 검색

Decrescit igitur area EDT uniformiter ad modum temporis futuri, per subductionem datarum particularum DTV, & propterea tempori ascensus futuri proportionalis est. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 19:10)
Si velocitas in ascensu corporis exponatur per longitudinem AP ut prius, & resistentia ponatur esse ut APq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 21:2)
& erit tempus ascensus futuri ut Hyperbolae sector TDE.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 21:9)
Iisdem positis, dico quod spatium ascensu vel descensu descriptum, est ut summa vel differentia areae per quam tempus exponitur, & areae cujusdam alterius quae augetur vel diminuitur in progressione Arithmetica;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 28:1)
spatium quod corpus ascensu vel descensu toto in Medio resistente describit, erit ad spatium quod in Medio non resistente eodem tempore describere posset, ut arearum illarum differentia ad BD × V^2 ÷ 4AB, ideoque ex dato tempore datur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 35:3)
Unde cum spatia in Medio utroque, in principio descensus vel fine ascensus simul descripta accedunt ad aequalitatem, adeoque tunc sunt ad invicem ut area BD × V^2 ÷ 4AB & arearum DET & AKNb differentia;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 35:13)
Earum vero quae in majoribus arcubus fiunt, tempora sunt paulo majora, propterea quod resistentia in descensu corporis qua tempus producitur, major sit pro ratione longitudinis in descensu descriptae, quam resistentia in ascensu subsequente qua tempus contrahitur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 23:3)
Pendulis igitur in descensu magis resistit, in ascensu minus quam pro ratione velocitatis, & ex utraque causa tempus producitur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 23:8)
Si corpus Funependulum in Cycloide oscillans resistitur in ratione momentorum temporis, erit ejus resistentia ad vim gravitatis ut excessus arcus descensu toto descripti supra arcum ascensu subsequente descriptum, ad penduli longitudinem duplicatam.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 25:1)
Designet BC arcum descensu descriptum, Ca arcum ascensu descriptum, & Aa differentiam arcuum:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 26:1)
& quaeratur resistentia corporis in loco quovis D. Secetur recta infinita OQ in punctis O, C, P, Q ea lege ut (si erigantur perpendicula OK, CT, PI, QE, centroque O & Asymptotis OK, OQ describatur Hyperbola TIGE secans perpendicula CT, PI, QE in T, I & E, & per punctum I agatur KF occurrens Asymptoto OK in K, & perpendiculis CT & QE in L & F) fuerit area Hyperbolica PIEQ ad aream Hyperbolicam PITC ut arcus BC descensu corporis descriptus ad arcum Ca ascensu descriptum, & area IEF ad aream ILT ut OQ ad OC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 30:3)
id adeo quia si resistentia Z augeatur, velocitas una cum arcu illo Ca, qui in ascensu corporis describitur, diminuetur;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 33:3)
dico quod differentia inter arcum descensu toto descriptum, & arcum ascensu toto subsequente descriptum, ducta in arcuum eorundem semisummam, aequalis erit areae BKaB a perpendiculis omnibus DK occupatae, quamproxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 40:2)
erit N locus ad quem corpus deinceps absque ulteriore resistentia ascenderet, & MN erit decrementum ascensus ex velocitatis illius amissione oriundum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 42:12)
differentia inter arcum descensu descriptum & arcum subsequente ascensu descriptum, augebitur vel diminuetur in eadem ratione quamproxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 49:2)

SEARCH

MENU NAVIGATION