라틴어 문장 검색

adeo ex dato tempore detur, dabitur Op positione, & inde dabitur communis ejus & Ellipseos intersectio p, una cum angulo OPp, in quo Trajectoriae vestigium APp secat lineam OP.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 59:7)
Inde autem invenietur Trajectoriae vestigium illud APp, eadem methodo qua curva linea VIKk in Propositione XLI.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 59:8)
Tum ex singulis vestigii punctis P erigendo ad planum AOP perpendicula PT superficiei curvae occurrentia in T, dabuntur singula Trajectoriae puncta T. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 59:10)
ex demonstratione superioris Propositionis, tempora quibus arcus quivis similes PQ & pq describuntur, sunt in dimidiata ratione distantiarum CP & SP vel sp, hoc est, in dimidiata ratione corporis S ad summam corporum S + P. Et componendo, summae temporum quibus arcus omnes similes PQ & pq describuntur, hoc est tempora tota quibus figurae totae similes describuntur, sunt in eadem dimidiata ratione. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 16:2)
Liquet fere ex demonstratione Corollarii secundi Propositionis praecedentis;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 48:1)
Ex demonstratione Propositionis novissimae liquet centrum in quod corpus Q conjunctis viribus urgetur, proximum esse communi centro gravitatis illorum duorum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 81:4)
interea de natura radiorum (utrum sint corpora necne) nihil omnino disputans, sed trajectorias corporum trajectoriis radiorum persimiles solummodo determinans.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 16:14)
Corpus igitur inter descendendum, tempore quovis ABrL, describit spatium Blr, & tempore LrtN spatium rlnt. Q. E. D. Et similis est demonstratio motus expositi in ascensu. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 19:31)
Hisce circumstantiis pressionem nil mutari colligitur, applicando demonstrationem Theorematis hujus ad Casus singulos Fluidorum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 19:4)
Eadem Demonstratione colligitur etiam (per Prop. XIX.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 20:2)
Nam similis est horum Casuum Demonstratio.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 23:18)
Res manifesta est, nec indiget demonstratione.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 65:4)
Optarim itaque (cum demonstratio vacui ex his dependeat) ut experimenta cum Globis & pluribus & majoribus & magis accuratis tentarentur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 90:3)
foret tempus vibrationis unius ad tempus oscillationis Penduli cujus longitudo est A, in dimidiata ratione longitudinis ½PS seu PO ad longitudinem A. Sed vis Elastica qua lineola Physica EG, in locis suis extremis P, S existens, urgetur, erat (in demonstratione Propositionis superioris) ad ejus vim totam Elasticam ut HL - KN ad V, hoc est (cum punctum K jam incidat in P) ut HK ad V:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:5)
Patet hoc ex demonstratione casus primi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 17:6)

SEARCH

MENU NAVIGATION