라틴어 문장 검색

Pondus autem p planis illis duobus obliquis incumbens, rationem habet cunei inter corporis fissi facies internas:
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 19:1)
ad vim qua urget planum alterum pG ut pN ad NH.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 19:4)
Quod si corpora vel non Sphaerica vel diversis in rectis moventia incidant in se mutuo oblique, & requirantur eorum motus post reflexionem, cognoscendus est situs plani a quo corpora concurrentia tanguntur in puncto concursus;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 24:1)
) distinguendus est in duos, unum huic plano perpendicularem, alterum eidem parallelum:
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 24:4)
motus autem paralleli, propterea quod corpora agant in se invicem secundum lineam huic plano perpendicularem, retinendi sunt iidem post reflexionem atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 24:5)
Nam si puncta duo progrediantur uniformi cum motu in lineis rectis & distantia eorum dividatur in ratione data, punctum dividens vel quiescet vel progredietur uniformiter in linea recta, Hoc postea in Lemmate xxiii demonstratur in plano, & eadem ratione demonstrari potest in loco solido.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 27:1)
sin planis obliquis aliisve admotis obstaculis impedita ascendunt vel descendunt oblique, aequipollent quae sunt ut ascensus & descensus quatenus facti secundum perpendiculum:
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 40:5)
Areas quas corpora in gyros acta radiis ad immobile centrum virium ductis describunt, & in planis immobilibus consistere, & esse temporibus proportionales.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 2:1)
I) reperietur in C, in eodem plano cum triangulo ASB.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 4:7)
jacebunt hae in eodem plano, & triangulum SCD triangulo SBC & SDE ipsi SCD & SEF ipsi SDE aequale erit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 4:12)
AEqualibus igitur temporibus aequales areae in plano immoto describuntur:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 4:13)
In hoc casu sensus Propositionis est, quod vis illa quae ex omnibus componitur, tendit ad punctum S. Porro si vis aliqua agat secundum lineam superficiei descriptae perpendicularem, haec faciet corpus deflectere a plano sui motus, sed quantitatem superficiei descriptae nec augebit nec minuet, & propterea in compositione virium negligenda est.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 12:2)
Et si Conisectio Parabolica, inclinatione plani ad conum sectum mutata, vertatur in Hyperbolam, movebitur corpus in hujus perimetro, vi centripeta in centrifugam versa.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 71:3)
Recta item & sectio Conica in constructione planorum problematum vertuntur in rectam & circulum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 69:3)
Id nisi necessario fieret, reducere liceret Problemata omnia Solida ad Plana, & plusquam solida ad solida.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:15)

SEARCH

MENU NAVIGATION