라틴어 문장 검색

Igitur inter transitum Undarum singularum tempus erit oscillationum duarum;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 30:11)
Constitui autem intelligatur Pendulum, cujus longitudo inter punctum suspensionis & centrum oscillationis sit A:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 50:2)
& quo tempore pendulum illud oscillationem integram ex itu & reditu compositam peragit, eodem pulsus eundo conficiet spatium circumferentiae circuli radio A descripti aequale.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 50:3)
Quare cum oscillationum tempora sint in dimidiata ratione longitudinis pendulorum, & longitudo penduli aequetur dimidio arcui Cycloidis totius;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:4)
foret tempus vibrationis unius ad tempus oscillationis Penduli cujus longitudo est A, in dimidiata ratione longitudinis ½PS seu PO ad longitudinem A. Sed vis Elastica qua lineola Physica EG, in locis suis extremis P, S existens, urgetur, erat (in demonstratione Propositionis superioris) ad ejus vim totam Elasticam ut HL - KN ad V, hoc est (cum punctum K jam incidat in P) ut HK ad V:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:5)
Quare cum tempora, quibus aequalia corpora per aequalia spatia impelluntur, sint reciproce in dimidiata ratione virium, erit tempus vibrationis unius urgente vi illa Elastica, ad tempus vibrationis urgente vi ponderis, in dimidiata ratione V × EG ad HK × A, atque adeo ad tempus oscillationis Penduli cujus longitudo est A, in dimidiata ratione V × EG ad HK × A & PO ad A conjunctim;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:8)
Ergo tempus quo pulsus percurrit spatium BC, est ad tempus oscillationis unius ex itu & reditu compositae, ut BC ad Z × A ÷ PO, id est ut BC ad circumferentiam circuli cujus radius est A. Tempus autem, quo pulsus percurret spatium BC, est ad tempus quo percurret longitudinem huic circumferentiae aequalem, in eadem ratione;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:17)
ideoque tempore talis oscillationis pulsus percurret longitudinem huic circumferentiae aequalem. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:18)
Et cum Pendulum digitos 39-1/5 longum, oscillationem ex itu & reditu compositam, tempore minutorum duorum secundorum, uti notum est, absolvat;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 56:15)
pendulum pedes 29042, seu digitos 348500, longum, oscillationem consimilem tempore minutorum secundorum 188-4/7 absolvere debebit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 56:16)
sed longitudine quatuor digitorum, oscillationes nimis celeres esse, ea novem digitorum nimis tardas judicabam.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 56:27)
Unam implebam ligno, & idem auri pondus suspendebam (quàm potui exactè) in alterius centro oscillationis.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 21:5)
Et paribus oscillationibus juxta positae ibant unà & redibant diutissime.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 21:7)
Exponatur vis maxima EL in Octantibus per aream FK × Kk rectangulo ½SP × Pp aequalem.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 29:20)
Et velocitas, quam vis maxima tempore quovis CP generare posset, erit ad velocitatem quam vis omnis minor EL eodem tempore generat ut rectangulum ½SP × CP ad aream KCGF:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 29:21)

SEARCH

MENU NAVIGATION