라틴어 문장 검색

Quae de Hyperbolis dicta sunt facile applicantur ad Parabolas.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 104:1)
Nam si XAGK Parabolam designet quam recta XV tangat in vertice X, sintq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 104:2)
agantur XT, TG, HA, quarum XT parallela sit VG, & TG, HA parabolam tangant in G & A:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 104:4)
& corpus de loco quovis A, secundum rectam AH productam, justa cum velocitate projectum, describet hanc Parabolam, si modo densitas Medij, in locis singulis G, sit reciproce ut tangens GT.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 104:5)
Velocitas autem in G ea erit quacum Projectile pergeret, in spatio non resistente, in Parabola Conica, verticem G, diametrum VG deorsum productam, & latus rectum [sqrt]{2TGq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 104:6)
Fiat resistentia aequalis dimidio vis centripetae & Spiralis conveniet cum linea recta PS, inque hac recta corpus descendet ad centrum, dimidia semper cum velocitate qua probavimus in superioribus in casu Parabolae (Theor. X. Lib. I.) descensum in Medio non resistente fieri.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 12:3)
Quod si resistentia DK sit in duplicata ratione velocitatis, figura BKTVa Parabola erit verticem habens V & axem OV, ideoque aequalis erit duabus tertiis partibus rectanguli sub Ba & OV quam proxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 46:1)
Nam cum Ellipsis vel Parabola congruat cum figura BKVTa in puncto medio V, haec si ad partem alterutram BKV vel VTa excedit figuram illam, deficiet ab eadem ad partem alteram, & sic eidem aequabitur quam proxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 47:2)
consequens est quod si egrediatur oblique per canalem in latus vasis, describet in spatiis non resistentibus Parabolam cujus latus rectum est altitudo aquae in vase supra canalis orificium, & cujus diameter horizonti perpendicularis ab orificio illo ducitur, atque ordinatim applicatae parallelae sunt axi canalis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 50:2)
Obtinent autem hae Regulae in Planetis utrisque quam accuratissimè, quatenus observationes Astronomicae hactenus prodidêre.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 32:4)
Corpus autem quod revolvitur in Orbe BE, tardiùs movebitur in Aphelio B & velociùs in Perihelio C, secundum leges Astronomicas;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 40:5)
Hypothesis Vorticum cum Phaenomenis Astronomicis omninò pugnat, & non tam ad explicandos quàm ad perturbandos motus coelestes conducit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 40:14)
Constat ex observationibus Astronomicis.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 가설 11:1)
Tempora verò periodica esse in sesquialtera semidiametrorum orbium consentiunt Astronomici:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 가설 11:3)
1 & 2. Lem. X. & Corol. 16. Prop. LXVI. Lib. I.) Sed haec inaequalitas in calculo Astronomico, ad Prostaphaeresin Lunae referri solet, & cum ea confundi.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 7:5)

SEARCH

MENU NAVIGATION