라틴어 문장 검색

rursus qui eosdem multiplicante quinario nati sunt, secundo loco sunt constituti, post vero, quos septenarius ceteros multiplicando procreavit, eosdem tertio conscripsimus loco, atque idem in reliqua descriptionis parte perfecimus.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 6:7)
Superius igitur digestae descriptionis haec ratio est:
(보이티우스, De Arithmetica, Liber primus, Descriptionis ad inpariter paris naturam pertinentis expositio 1:1)
Et in alio vero latere longitudinis eadem ratio descriptione notata est. Quare manifestum est, hunc numerum ex prioribus duobus esse procreatum, quoniam eorum retinet proprietates.
(보이티우스, De Arithmetica, Liber primus, Descriptionis ad inpariter paris naturam pertinentis expositio 2:9)
Secundus vero et compositus et ipse quidem inpar est, propterea quod eadem inparis proprietate formatus est, sed nullam in se retinet substantiam principalem compositusque est ex aliis numeris habetque partes et a se ipso et ab alieno vocabulo denominatas;
(보이티우스, De Arithmetica, Liber primus, De secundo et composito 1:1)
Secundus autem vocatur hic numerus, quoniam non sola unitate metitur sed etiam alio numero, a quo scilicet coniunctus est, neque habet quicquam in se principalis intellegentiae.
(보이티우스, De Arithmetica, Liber primus, De secundo et composito 3:1)
Sit enim talis descriptio, in qua ponatur in ordinem usque ad denarium numerum continui numeri ordo naturalis et secundo versu duplus ordo texatur, tertio triplus, quarto quadruplus et hoc usque ad decuplum.
(보이티우스, De Arithmetica, Liber primus, Descriptio, per quam docetur ceteris inaequalitatis speciebus antiquiorem esse multiplicitatem. 1:2)
Quam rem nobis scilicet et ipsa naturalis obiecit integritas, nihil nobis extra machinantibus, ut in ipso modulo descriptionis apparet.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 1:4)
Si quis vero in hac descriptione superparticularis species requirat, tali modo repperiet.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 1:7)
Tetragonus autem dicitur, ut brevissime dicam, quod post latius explicabitur, quem duo aequales numeri multiplicant, ut in hac quoque descriptione est. Unus enim semel unus est, et est potestate tetragonus.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:2)
et ut angulorum totius descriptionis ad angulares tetragonos positorum unius anguli sit prima unitas, alterius vero, qui contra est, tertia, bini vero altrinsecus anguli secundas habeant unitates;
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:13)
Multa etiam sunt alia quae in hac descriptione utilia possint admirabiliaque perpendi, quae interim propter castigatam introducendi brevitatem ignota esse permittimus.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:15)
Si vero a duobus paribus omnibus dispositis terminis illi, qui a quinario numero inchoantes quinario numero rursus sese transsiliunt, comparentur, omnes duplices sesqualteros creant, ut est subiecta descriptio,
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 5:1)
Si vero a tribus inchoent dispositiones et tribus sese transsiliant, et ad eos aptentur, qui a septenario inchoantes septenario sese numero transgrediuntur, omnes duplices sesquitertii habita diligenter comparatione nascuntur, ut subiecta descriptio monet.
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 8:1)
Horum autem eorumque qui sequuntur exempla integre planeque possumus pernotare, si in priorem descriptionem, quam fecimus, cum de superparticulari et multiplici loqueremur, ubi ab uno usque in denariam multiplicationem summa concrevit, diligens velimus acumen intendere.
(보이티우스, De Arithmetica, Liber primus, De eorum exemplis in superiori formula inveniendis. 1:1)
Multiplex vero superparticularis ostenditur, cum ad secundum versum omnes, qui sunt quinti versus serie comparantur, vel qui sunt in septimo, vel qui sunt in nono, atque ita si in infinitum sit ista descriptio, in infinitum huius proportionis species procreabuntur.
(보이티우스, De Arithmetica, Liber primus, De eorum exemplis in superiori formula inveniendis. 1:5)

SEARCH

MENU NAVIGATION