라틴어 문장 검색

Ex his locis apparentibus inveniantur per operationes Trigonometricas loca tria vera Cometae in assumpto illo plano Trajectoriae.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 42 3:6)
Augeatur longitudo Nodorum Plani Trajectoriae, additis ad longitudinem illam 20' vel 30', quae dicantur P;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 42 4:2)
Servetur Longitudo Nodorum in operatione prima, & augeatur inclinatio Plani Trajectoriae ad planum Eclipticae, additis ad inclinationem illam 20' vel 30', quae dicantur Q. Deinde ex observatis praedictis tribus Cometae locis apparentibus, inveniantur in hoc novo Plano loca tria vera, Orbisque per loca illa transiens, ut & ejusdem areae duae inter observationes descriptae, quae sint [delta] & [epsilon], & tempus totum [tau] quo area tota [delta] + [epsilon] describi debeat.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 42 5:2)
Et si, in operatione prima, I designet inclinationem plani Trajectoriae ad planum Eclipticae, & K longitudinem Nodi alterutrius:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 42 6:4)
erit I + nQ vera inclinatio Plani Trajectoriae ad Planum Eclipticae, & K + mP vera longitudo Nodi.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 42 6:5)
Ac denique si in operatione prima, secunda ac tertia, quantitates R, r & [rho] designent Latera recta Trajectoriae, & quantitates 1 ÷ L, 1 ÷ l, 1 ÷ [lambda] ejusdem Latera transversa respectivè:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 42 6:6)
erit R + mr - mR + n[rho] - nR verum Latus rectum, & 1 ÷ {L + ml - mL + n[lambda] - nL} verum Latus transversum Trajectoriae quàm Cometa describit.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 42 6:7)
Verum ob motum Terrae, quo Sol in antecedentia motu apparente transfertur, Luna, priusquam Solem assequitur, describit angulum CSa angulo recto majorem in ratione revolutionis Lunaris Synodicae ad revolutionem periodicam, id est in ratione 29 d. 12 h. 44'.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 46:13)
vel (quod eodem fere recidit) ut angulus CSp sit ad angulum CSP ut tempus revolutionis Synodicae Lunaris ad tempus revolutionis Periodicae seu 29 d. 12. h.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 41:4)
Ut si axis orbis Cometae sit quadruplo major axe orbis Saturni, tempus revolutionis Cometae erit ad tempus revolutionis Saturni, id est ad annos 30, ut 4[sqrt]4 (seu 8) ad 1, ideoque erit annorum 240.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 24:4)
Sit S centrum virium, SC distantia minima centri hujus a plano dato, P corpus de loco P secundum rectam PZ egrediens, Q corpus idem in Trajectoria sua revolvens, & PQR Trajectoria illa in plano dato descripta, quam invenire oportet.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 4:1)
& hinc errores angulares e centro S spectati (id est tam motus Augis & Nodorum, quam omnes in longitudinem & latitudinem errores apparentes) sunt in qualibet revolutione corporis P, ut quadratum temporis revolutionis quam proxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 68:10)
Curvatura Trajectoriae, quam mobile, si secundum Trajectoriae illius perpendiculum trahatur, describit, est ut attractio directè & quadratum velocitatis inversè.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 40:1)
& propterea corpus de Apside summa discedens & subinde perpetuo descendens, perveniet ad Apsidem imam ubi complevit revolutionem integram, dein perpetuo ascensu complendo aliam revolutionem integram, redibit ad Apsidem summam:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 18:32)
& pone tempus revolutionis hujus esse ad summam hujus temporis & temporis revolutionis globi, ut quadratum semidiametri vasis ad quadratum semidiametri globi:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 27:4)

SEARCH

MENU NAVIGATION