라틴어 문장 검색

Hinc in omni Conisectione ex dato vertice principali D, latere recto L, & umbilico S, datur umbilicus alter H capiendo DH ad DS ut est latus rectum ad differentiam inter latus rectum & 4DS.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 50:2)
Si ab Ellipseos vel Hyperbolae cujusvis umbilicis duobus S, H, ad punctum quodvis tertium V inflectantur rectae duae SV, HV, quarum una HV aequalis sit axi transverso figurae, altera SV a perpendiculo TR in se demisso bisecetur in T;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 3:1)
Sit enim H umbilicus alter figurae descriptae, & cum sit SA ad AG ut Sa ad aG, erit divisim Sa - SA seu SH ad aG - AG seu Aa in eadem ratione, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 16:7)
Super diametro Kk describatur circulus secans rectam OH in H;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 18:6)
& umbilicis S, H, axe transverso ipsam VH aequante, describatur Trajectoria.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 18:7)
similis sit figurae apb, axe transverso ab & umbilicis s, h descriptae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 22:4)
umbilicis S, H, axe distantiam VH aequante, describatur sectio conica.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 22:12)
Detur umbilicus S, punctum P, & tangens TR, & inveniendus sit umbilicus alter H. Ad tangentem demitte perpendiculum ST, & produc idem ad Y, ut sit TY aequalis ST, & erit YH aequalis axi transverso.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 34:1)
Hoc modo si dentur plures tangentes TR, vel plura puncta P, devenietur semper ad lineas totidem YH, vel PH, a dictis punctis Y vel P ad umbilicum H ductas, quae vel aequantur axibus, vel datis longitudinibus SP differunt ab iisdem, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 34:3)
& inde, per Lemma superius, datur umbilicus ille alter H. Habitis autem umbilicis una cum axis longitudine (quae vel est YH, vel si Trajectoria Ellipsis est, PH + SP;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 34:5)
Secet ea lineas oppositas BD, CD, nimirum BD in H & CD in I, & ob datos omnes angulos figurae, dabuntur rationes PQ ad PA & PA ad PS, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 19:2)
Haec AG occurrat Loco in H, & erit AH latus transversum, ad quod latus rectum est ut BGq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 22:5)
Sin ea alicubi occurrit, Locus Hyperbola erit ubi puncta A & H sita sunt ad easdem partes ipsius G:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 22:9)
Jungantur BP, CP & a puncto D agantur rectae duae DG, DE, quarum prior DG ipsi AB parallela sit & occurrat PB, PQ, CA in H, I, G;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 27:2)
occurrentia in H & I. Secetur tangens in A, ita ut sit HA ad AI, ut est rectangulum sub media proportionali inter BH & HD & media proportionali inter CG & GP, ad rectangulum sub media proportionali inter PI & IC & media proportionali inter DG & GB, & erit A punctum contactus.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 57:4)

SEARCH

MENU NAVIGATION