라틴어 문장 검색

Namque inter unum et duo tantum unitas intercedit, quae unitatis, cui aequalis est, totum est;
(보이티우스, De Arithmetica, Liber secundus, Alternatim positis quadratis et parte altera longioribus qui sit eorum consensus in differentiis et in proportionibus 8:2)
Si igitur in utrisque versibus primos aspicias, singulos quos invenis, quoniam tetragoni sunt, in inpari loco sunt constituti, quoniam primi sunt.
(보이티우스, De Arithmetica, Liber secundus, Probatio quadratos eiusdem esse naturae 4:1)
Et si nonum locum rursus adspicias, tetragonos pernotabis cclvj et mmmmmmdlxj;
(보이티우스, De Arithmetica, Liber secundus, Probatio quadratos eiusdem esse naturae 4:5)
Ipsi vero cybi, qui quamquam tribus intervallis sublati sint, tamen propter aequalem multiplicationem participant inmutabilis substantiae eiusdemque naturae sunt socii, non aliorum quam inparium coacervatione producuntur, nunquam vero parium.
(보이티우스, De Arithmetica, Liber secundus, Cybos eiusdem participare substantiae, quod ab inparibus nascantur 1:1)
Arithmeticam medietatem vocamus, quotiens vel tribus vel quotlibet terminis positis aequalis atque eadem differentia inter omnes dispositos terminos invenitur.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 1:1)
aequales enim sunt differentiae, sed eadem proportio atque habitudo non est. Si igitur in tribus terminis consideratio sit, continua proportionalitas dicitur;
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 1:4)
Nam si aequales terminos intermittas et uno sese in priore dispositione praetereant, si singulos intermittas, solius binarii notabitur differentia, sin vero duos praetereas, ternarii, si tres, quaternarii, si quattuor, quinarii.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 1:12)
Quarta vero est proprietas huiusce medietatis, quod vel in maioribus vel in minoribus terminis aequales semper proportiones sunt.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 22:6)
Tetragonus j
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 23:1)
Tetragonus iiij dupla
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 25:1)
Tetragonus viiij sesqualtera
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 27:1)
Tetragonus xvj sesquitertia
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 29:1)
Tetragonus xxv sesquiquarta
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 31:1)
Tetragonus xxxvj sesquiquinta
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 33:1)
Tetragonus xlviiij sesquisexta
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 35:1)

SEARCH

MENU NAVIGATION