라틴어 문장 검색

Sit autem AP via tota curvilinea descripta ex quo Rota globum tetigit in A, & erit viae hujus longitudo AP ad duplum sinum versum arcus ½PB, ut 2CE ad CB.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 15:4)
longitudo illa est ut rectangulum BEC, si modo Globi detur semidiameter.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 20:3)
ad Globi centrum C sit in locis singulis ut distantia loci cujusq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 28:2)
ea in perimetro HIK aequalis vi centripetae in perimetro globi QOS (Vide Fig. Prop. L. & LI.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 33:3)
Quoniam corpora pendula sub initio motus versantur in circumferentia globi QOS, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 35:4)
) ut latus quadratum rectanguli BEC contenti sub semidiametro Rotae, qua Cyclois descripta fuit, & differentia inter semidiametrum illam & semidiametrum globi. Q. E. I. Est & idem tempus (per Corol. Prop. L.) in dimidiata ratione longitudinis fili AR. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 35:13)
Porro si in globis concentricis describantur similes Cycloides:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 36:1)
Cum igitur Oscillationum tempora in Globo dato sint in dimidiata ratione longitudinis AR, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 36:4)
& hic numerus [sqrt]{AR ÷ AC} servata ratione AR ad AC (ut fit in Cycloidibus similibus) idem semper maneat, & propterea in globis diversis, ubi Cycloides sunt similes, sit ut tempus:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 36:6)
manifestum est quod Oscillationum tempora in alio quovis globo dato, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 36:7)
si vires absolutae diversorum globorum ponantur inaequales, accelerationes temporibus aequalibus factae, erunt ut vires.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 37:2)
Ergo Oscillationes in globis & Cycloidibus omnibus, quibuscunq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 37:4)
cum viribus absolutis factae, sunt in ratione quae componitur ex dimidiata ratione longitudinis Penduli directe, & dimidiata ratione distantiae inter centrum Penduli & centrum globi inverse, & dimidiata ratione vis absolutae etiam inverse, id est, si vis illa dicatur V, in ratione numeri [sqrt]{AR ÷ {AC × V}}. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 37:5)
Unde datur tum tempus descensus de loco quovis ad centrum, tum tempus huic aequale quo corpus uniformiter circa centrum globi ad distantiam quamvis revolvendo arcum quadrantalem describit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 38:4)
Nam si globi diameter augeatur in infinitum, mutabitur ejus superficies Sphaerica in planum, visq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 39:3)

SEARCH

MENU NAVIGATION