라틴어 문장 검색

Premitur praeterea superficies secunda BFK vi propriae gravitatis, quae addita vi priori facit pressionem duplam.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 17:6)
Hac pressione & insuper vi propriae gravitatis, id est pressione tripla, urgetur superficies tertia CGL.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 17:7)
Et similiter pressione quadrupla urgetur superficies quarta, quintupla quinta & sic deinceps.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 17:8)
Pressio igitur qua superficies unaquaeque urgetur, non est ut quantitas solida fluidi incumbentis, sed ut numerus Orbium ad usque summitatem fluidi;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 17:9)
hoc est gravitati solidi cujus ultima ratio ad Cylindrum praefinitum, (si modo Orbium augeatur numerus & minuatur crassitudo in infinitum, sic ut actio gravitatis a superficie infima ad supremam continua reddatur) fiet ratio aequalitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 17:11)
Sustinet ergo superficies infima pondus cylindri praefiniti. Q. E. D. Et simili argumentatione patet Propositio, ubi gravitas decrescit in ratione quavis assignata distantiae a centro, ut & ubi Fluidum sursum rarius est, deorsum densius. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 17:12)
In aequalibus autem a centro distantiis eadem semper est pressionis quantitas, sive superficies pressa sit Horizonti parallela vel perpendicularis vel obliqua;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 19:2)
sive fluidum a superficie pressa sursum continuatum surgat perpendiculariter secundum lineam rectam, vel serpit oblique per tortas cavitates & canales, easque regulares vel maxime irregulares, amplas vel angustissimas.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 19:3)
Concipe particulas viribus quibusdam se mutuo fugere, & vires illas in accessu ad superficies particularum augeri in infinitum, & contra, in recessu ab iisdem celerrime diminui & statim evanescere.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 20:1)
Corporum Sphaericorum in Mediis quibusque Fluidissimis resistentiam in anteriore superficie definire.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 54:1)
Tanta est resistentia Globi in superficiei parte praecedente. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 60:4)
At postquam competentem Fluiditatis gradum acquisiverit, (qualis forte est Fluiditas Aeris vel aquae vel argenti vivi) resistentia in anteriore superficie solidi, per ulteriorem partium divisionem non multum minuetur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 62:4)
Designet igitur A resistentiam pyxidis in ipsius superficie externa, & B resistentiam pyxidis vacuae in partibus internis;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 106:1)
Est igitur resistentia pyxidis vacuae in partibus internis quinquies millies minor quam ejusdem resistentia in externa superficie, & amplius.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 106:5)
Nam tempora oscillationum pyxidis plenae minora sunt quam tempora oscillationum pyxidis vacuae, & propterea resistentia pyxidis plenae in externa superficie major est, pro ipsius velocitate & longitudine spatii oscillando descripti, quam ea pyxidis vacuae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 106:8)

SEARCH

MENU NAVIGATION