라틴어 문장 검색

Sed hic primus rursus et incompositus est. Hunc igitur cum extremi adgregati summa multiplica, ut fiant sedecies xxxj, qui ccccxcvj explicant.
(보이티우스, De Arithmetica, Liber primus, De generatione numeri perfecti. 4:16)
Tetragonus autem dicitur, ut brevissime dicam, quod post latius explicabitur, quem duo aequales numeri multiplicant, ut in hac quoque descriptione est. Unus enim semel unus est, et est potestate tetragonus.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:2)
Hoc igitur cum in terminis aequalibus feceris, ex his qui nascentur, duplices erunt, de quibus duplicibus si idem feceris, triplices procreantur et de his quadruplices atque in infinitum omnes formas numeri multiplicis explicabit.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 1:13)
ut, quoniam articularis vocis elementa sunt litterae, ab eis est syllabarum progressa coniunctio et in easdem rursus terminatur extremas;
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum ad aequalitatem omnis inaequalitas reducatur 1:3)
Ex hoc igitur principio, id est ex unitate, prima omnium longitudo succrescit, quae a binarii numeri principio in cunctos sese numeros explicat, quoniam primum intervallum linea est. Duo vero intervalla sunt longitudo et latitudo, id est linea et superficies.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:24)
Linearis numerus est a duobus inchoans adiecta semper unitate in unum eundemque ductum quantitatis explicata congeries, ut est id, quod subiecimus.
(보이티우스, De Arithmetica, Liber secundus, De numero lineari 1:3)
Huic vero si consequentem quaternarium superposuero, denarius explicatur, qui est tertius actu triangulus, quos per latera disponens ad superioris descriptionis exemplar cunctos triangulos numeros sine ullius dubitationis erroribus pernotabis.
(보이티우스, De Arithmetica, Liber secundus, De generatione triangulorum numerorum 3:5)
Ipsorum vero cyborum quanticunque fuerint ita ducti, ut a quo numero cybicae quantitatis latus coeperit, in eundem altitudinis extremitas terminetur, numerus ille cyclicus vel sphericus appellatur;
(보이티우스, De Arithmetica, Liber secundus, De circularibus vel sphericis numeris 1:1)
CXXV et si hos rursus quinquies ducas, in quinarium numerum extremitas terminabitur.
(보이티우스, De Arithmetica, Liber secundus, De circularibus vel sphericis numeris 1:5)
Unitas quoque virtute et potestate ipsa quoque circulus vel sphera est. Quotiens enim punctum in se multiplicaveris, in se ipsum, unde coeperat, terminatur.
(보이티우스, De Arithmetica, Liber secundus, De circularibus vel sphericis numeris 1:11)
Omne autem, quicquid in propria natura substantiaque est inmobile, terminatum definitumque est, quippe quod nulla variatione mutetur, nunquam esse desinat, nunquam possit esse, quod non fuit.
(보이티우스, De Arithmetica, Liber secundus, Quod omnia ex eiusdem natura et alterius natura consistant idque in numeris primum videri 1:1)
In sesqualtera vero duorum est differentia, in sesquitertia trium, in sesquiquarta quattuor et deinceps secundum superparticulares formas numerorum, quod ad differentias adtinet, uno tantum crescit adiectio numerum explicans naturalem.
(보이티우스, De Arithmetica, Liber secundus, Ex eiusdem atque alterius numeri natura qui sunt quadratus et parte altera longior, omnes proportionum habitudines constare 4:2)
Nam si omnes ab unitate inpares disponantur, iuncti figuras cybicas explicabunt.
(보이티우스, De Arithmetica, Liber secundus, Cybos eiusdem participare substantiae, quod ab inparibus nascantur 1:2)
nunc res admonet quaedam de proportionibus disputantes, quae nobis vel ad musicas speculationes vel ad astronomicas subtilitates vel ad geometricae considerationis vim vel etiam ad veterum lectionum intellegentiam prodesse possint, arithmeticam introductionem commodissime terminare.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:2)
In quattuor enim terminis si fuerit quemadmodum primus ad tertium sic secundus ad quartum, proportionum ratione scilicet custodita, geometrica medietas explicatur, et quod continetur sub extremitatibus, aequum erit ei, quod sub utraque medietate ad se invicem multiplicata conficitur.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:4)

SEARCH

MENU NAVIGATION