라틴어 문장 검색

Habebit enim octonarius senarium totum et eius tertiam partem, id est ij Et per eandem sequentiam usque in infinitum progrediendum est. Notandum quoque est, quod iij comites sunt, duces iiij, rursus vj comites, duces viij, et in eodem ordine ceteri simili modo vocantur duces sesquitertii comites subsesquitertii.
(보이티우스, De Arithmetica, Liber primus, De superparticulari eiusque speciebus earumque generationibus. 10:3)
Sit enim talis descriptio, in qua ponatur in ordinem usque ad denarium numerum continui numeri ordo naturalis et secundo versu duplus ordo texatur, tertio triplus, quarto quadruplus et hoc usque ad decuplum.
(보이티우스, De Arithmetica, Liber primus, Descriptio, per quam docetur ceteris inaequalitatis speciebus antiquiorem esse multiplicitatem. 1:2)
Si quis autem quarti anguli terminum, qui xvj numeri quantitate notatus est et longitudinem latitudinemque in quadragenos determinat, velit superioribus comparare, per x litterae formam proportione conlata, quadrupli multitudinem pernotabit, hisque est ordinabilis super se progressio, ut primus primum tribus superet, ut iiij unitatem, secundus secundum senario vincat, ut viij binarium, tertius tertium novenario transeat, ut duodenarius ternarium, et sequentes summulae trium se semper adiecta quantitate transsiliant.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 1:5)
Si ergo numerus alium intra se numerum habens eius duas partes habuerit, superbipartiens nominatur, sin vero tres, supertripartiens, quodsi iiij, superquadripartiens, atque ita progredientibus in infinitum fingere nomina licet.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 2:3)
habet enim quinarius totos in se tres et eorum duas partes id est duo. Si vero ad secundum ordinem speculatio referatur, supertripartiens proportio cognoscetur atque ita in sequentibus per omnes dispositos numeros omnes in infinitum species huius numeri convenientes ordinatasque respicies.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 5:2)
At vero quemadmodum singuli procreentur si in infinitum quis curet agnoscere, hic modus est. Habitudo enim superbipartientis, si utrisque terminis duplicetur, semper superbipartiens proportio procreatur.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 6:1)
Et hos ipsos rursus si duplicaveris, idem ordo proportionis adcrescit, idemque si infinitum facias, statum prioris habitudinis non mutabit.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 6:3)
qui dicitur supertripartiens, is sit supertriquartus, et qui dicitur superquadripartiens, idem dicatur superquadriquintus, eademque similitudine usque in infinitum nomina producantur.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 7:5)
Multiplex superparticularis est, quotiens numerus ad numerum comparatus habet eum plus quam semel et eius unam partem, hoc est habet eum aut duplum aut triplum aut quadruplum aut quotienslibet et eius quamlibet aliquam partem vel mediam vel tertiam vel quartam vel, quaecunque alia partium exuberatione contigerit.
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 1:4)
Magnus quippe in hac scientia fructus est, si quis non nesciat, quod bonitas definita et sub scientiam cadens animoque semper imitabilis et perceptibilis prima natura est et suae substantiae decore perpetua, infinitum vero malitiae dedecus est, nullis propriis principiis nixum, sed natura semper errans a boni definitione principii tamquam aliquo signo optimae figurae inpressa componitur et ex illo erroris fluctu retinetur.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 1:2)
Ex his igitur secundum praecepti nostri ordinem videas primum nasci multiplices et in his duplices prius, dehinc triplos, inde quadruplos et ad eundem ordinem consequentes.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 1:7)
Rursus multiplices si convertantur, ex his superparticulares orientur, et ex duplicibus quidem sesqualteri ex triplis sesquitertii, ex quadruplis sesquiquarti et ceteri in hunc modum.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 1:8)
Hoc igitur cum in terminis aequalibus feceris, ex his qui nascentur, duplices erunt, de quibus duplicibus si idem feceris, triplices procreantur et de his quadruplices atque in infinitum omnes formas numeri multiplicis explicabit.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 1:13)
Rursus si triplicibus idem feceris, continuus quadruplus procreabitur.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 10:1)
Si vero qui ex aequalibus nati sunt multiplices, eos disponamus et secundum haec praecepta vertamus, ita ut converso sint ordine, sesqualter ex duplici procreabitur, sesquitertius ex triplici, sesquiquartus ex quadruplo.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 15:2)

SEARCH

MENU NAVIGATION