라틴어 문장 검색

Multiplex vero superparticularis ostenditur, cum ad secundum versum omnes, qui sunt quinti versus serie comparantur, vel qui sunt in septimo, vel qui sunt in nono, atque ita si in infinitum sit ista descriptio, in infinitum huius proportionis species procreabuntur.
(보이티우스, De Arithmetica, Liber primus, De eorum exemplis in superiori formula inveniendis. 1:5)
Multiplex vero superpartiens est, quotiens numerus ad numerum comparatus habet in se alium numerum totum plus quam semel et eius vel duas vel tres vel quotlibet plures particulas secundum numeri superpartientis figuram.
(보이티우스, De Arithmetica, Liber primus, De multiplici superpartiente. 1:1)
Ex his igitur secundum praecepti nostri ordinem videas primum nasci multiplices et in his duplices prius, dehinc triplos, inde quadruplos et ad eundem ordinem consequentes.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 1:7)
Rursus multiplices si convertantur, ex his superparticulares orientur, et ex duplicibus quidem sesqualteri ex triplis sesquitertii, ex quadruplis sesquiquarti et ceteri in hunc modum.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 1:8)
Rectis autem positis neque conversis prioribus superparticularibus multiplices superparticulares oriuntur;
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 1:10)
rectis vero superpartientibus multiplices superpartientes efficiuntur.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 1:11)
Hoc igitur cum in terminis aequalibus feceris, ex his qui nascentur, duplices erunt, de quibus duplicibus si idem feceris, triplices procreantur et de his quadruplices atque in infinitum omnes formas numeri multiplicis explicabit.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 1:13)
Si vero qui ex aequalibus nati sunt multiplices, eos disponamus et secundum haec praecepta vertamus, ita ut converso sint ordine, sesqualter ex duplici procreabitur, sesquitertius ex triplici, sesquiquartus ex quadruplo.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 15:2)
At vero si ad superpartientes animum convertamus eosque ordinatim secundum superiora praecepta disponamus, multiplices superpartientes ordinatim progenitos repperiemus.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 49:1)
Hoc autem nos exempli gratia in multiplici tantum proportione docebimus, sollertem vero in aliis quoque inaequalitatis speciebus id experientem eadem ratio praeceptorum iuvabit.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum ad aequalitatem omnis inaequalitas reducatur 1:15)
Omnes enim multiplices tantarum similium sibimet proportionum principes erunt, quoto ipsi loco ab unitate discesserint.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 2:1)
Quod autem dico sibimet similium, tale est, ut dupli semper multiplicitas, ut superius destinatum est, sesqualteros creet et dux sit triplex sesquitertiorum, quadruplus sesquiquartis.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 2:2)
Nam quoniam primus triplex est ternarius numerus, habet unum sesquitertium, id est iiij, cuius quaternarii tertia pars non potest inveniri.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 9:3)
Secundus vero, qui est viiij, habet ad se duodenarium numerum sesquitertium, duodenarius autem, quoniam habet tertiam partem, in sesquitertia proportione comparatur ad eum numerus xvj, qui tertiae partis sectione solutus est xxvij autem, quoniam tertius est triplex, habet ad se sesquitertium xxxvj et hic rursus ad xlviij eadem proportione comparatur.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 9:5)
Et triplicis quidem haec est descriptio.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 9:9)

SEARCH

MENU NAVIGATION