라틴어 문장 검색

Jungantur Dp, DP, & erit sector circularis AtD ut tempus ascensus omnis futuri;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 48:3)
Agatur enim Dvq abscindens Sectoris ADt & trianguli ADp momenta, seu particulas quam minimas simul descriptas tDv & pDq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 50:2)
Ergo Sectoris particula vDt est ut pq ÷ Ck, id est, per Corol.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 50:10)
Et componendo fit summa particularum omnium tDv in Sectore ADt, ut summa particularum temporis singulis velocitatis decrescentis Ap particulis amissis pq respondentium, usq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 50:13)
hoc est, Sector totus ADt est ut ascensus totius futuri tempus. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 50:15)
Agatur DQV abscindens tum Sectoris DAV, tum trianguli DAQ particulas quam minimas TDV & PDQ;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 51:2)
Sectoris particula TDV est PDQ × AC ÷ CK, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 51:23)
Nimirum quod spatium illud omne sit ad spatium, uniformi cum velocitate AC eodem tempore descriptum, ut est area ABnk ad Sectorem ADt.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 53:3)
Velocitas corporis tempore ATD cadentis est ad velocitatem, quam eodem tempore in spatio non resistente acquireret, ut triangulum APD ad Sectorem Hyperbolicum ATD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 54:2)
Eodem argumento velocitas in ascensu est ad velocitatem, qua corpus eodem tempore in spatio non resistente omnem suum ascendendi motum amittere posset, ut triangulum ApD ad Sectorem circularem AtD, sive ut recta Ap ad arcum At.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 55:2)
Est igitur tempus quo corpus in Medio resistente cadendo velocitatem AP acquirit, ad tempus quo velocitatem maximam AC in spatio non resistente cadendo acquirere posset, ut Sector ADT ad triangulum ADC:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 56:2)
Et sumendo Sectorem ADT vel ADt ad triangulum ADC in ratione temporum;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 57:8)
dabitur tum velocitas AP vel Ap, tum area ABKN vel ABkn, quae est ad Sectorem ut spatium quaesitum ad spatium jam ante inventum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 57:9)
deinde etiam ponendo resistentiam Medii in loco quovis G esse ad Gravitatem ut S[sqrt]{1 + QQ} ad 2RR, & velocitatem esse illam ipsam quacum corpus, de loco C secundum rectam CF egrediens, in Parabola, diametrum CB & latus rectum {1 + QQ} ÷ R habente, deinceps moveri posset, solvetur Problema.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 71:16)
Sit linea ALCK Parabola, axem habens OL horizonti AK perpendicularem, & requiratur Medii densitas quae faciat ut projectile in ipsa moveatur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 74:2)

SEARCH

MENU NAVIGATION