라틴어 문장 검색

quadrato distantiae QC magis est proportionalis reciproce, quam quadrato distantiae QS:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 77:2)
Positis iisdem attractionum legibus, dico quod corpus exterius Q circa interiorum P & S commune gravitatis centrum C, radiis ad centrum illud ductis, describit areas temporibus magis proportionales, & Orbem ad formam Ellipseos umbilicum in centro eodem habentis magis accedentem, si corpus intimum & maximum his attractionibus perinde atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 79:1)
In Systemate corporum, quorum vires decrescunt in ratione duplicata distantiarum, si minora circa maximum in Ellipsibus umbilicum communem in maximi illius centro habentibus quam fieri potest accuratissimis revolvantur, & radiis ad maximum illud ductis describant areas temporibus quam maxime proportionales:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 88:2)
) similia, arcus illi erunt distantiis HP, LP proportionales, & superficiei Sphaericae particulae quaevis, ad HI & KL rectis per punctum P transeuntibus undiq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 4:4)
Iisdem positis, dico quod corpusculum extra Sphaericam superficiem constitutum attrahitur ad centrum Sphaerae, vi reciproce proportionali quadrato distantiae suae ab eodem centro.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 6:1)
dico quod vis qua corpusculum attrahitur proportionalis erit semi-diametro Sphaerae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 10:2)
Nam concipe corpuscula duo seorsim a Sphaeris duabus attrahi, & distantias a centris proportionales esse diametris, Sphaeras autem resolvi in particulas similes & similiter positas ad corpuscula.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 11:1)
distantiae a centris Sphaerarum proportionales earundem diametris;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 12:3)
distantiae erunt proportionales diametris.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 13:3)
dico quod corpusculum intra Sphaeram constitutum attrahitur vi proportionali distantiae suae ab ipsius centro.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 16:2)
Iisdem positis, dico quod corpusculum extra Sphaeram constitutum attrahitur vi reciproce proportionali quadrato distantiae suae ab ipsius centro.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 21:1)
Nam distinguatur Sphaera in superficies Sphaericas innumeras concentricas, & attractiones corpusculi a singulis superficiebus oriundae erunt reciproce proportionales quadrato distantiae corpusculi a centro, per Theor. XXXI.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 22:1)
si distantiae sunt proportionales diametris Sphaerarum, vires erunt ut diametri.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 23:5)
Si corpusculum extra Sphaeram homogeneam positum trahitur vi reciproce proportionali quadrato distantiae suae ab ipsius centro, constet autem Sphaera ex particulis attractivis;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 25:2)
Si ad Sphaerae datae puncta singula tendant vires aequales centripetae decrescentes in duplicata ratione distantiarum a punctis, dico quod Sphaera quaevis alia similaris attrahitur vi reciproce proportionali quadrato distantiae centrorum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 27:1)

SEARCH

MENU NAVIGATION